Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1977 Jul;36(8):2128-32.

Mechanisms and sites of action of newer angiotensin agonists and antagonists in terms of activity and receptor

  • PMID: 194800
Review

Mechanisms and sites of action of newer angiotensin agonists and antagonists in terms of activity and receptor

F M Bumpus. Fed Proc. 1977 Jul.

Abstract

From the myotropic and vasopressor activities of the numerous analogs of angiotensin II, it has been determined that the phenyl group of position 8 possesses the information for biologic response while the aromatic side groups in positions 4 and 6, the guanido group in position 2 and the C-terminal carboxyl are involved in binding to the receptor site. Removal of a side group of the C-terminal phenyalanine yields peptides that bind to the receptor. While many of these have low agonist properties, all have antagonist properties. Modifications in the aromatic side groups affect conformation of the octapeptide. This change may relate to receptor binding but sufficient data are not yet available to determine a correlation pattern. A proposed conformation for angiotensin is given as well as an artist's concept of angiotensin II binding to its membrane receptor utilizing the groups known to be involved in binding. Both angiotensin II and III [des-Asp] angiotensin II stimulate the biosynthesis and release of aldosterone from adrenal glomerulosa cells. Sufficient data are not yet available to determine whether the conversion of angiotensin II to angiotensin III is neccessary for the steroidogenesis activity.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms