Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Nov 1;254(5032):679-83.
doi: 10.1126/science.1948047.

Molecular basis of gating charge immobilization in Shaker potassium channels

Affiliations

Molecular basis of gating charge immobilization in Shaker potassium channels

F Bezanilla et al. Science. .

Abstract

Voltage-dependent ion channels respond to changes in the membrane potential by means of charged voltage sensors intrinsic to the channel protein. Changes in transmembrane potential cause movement of these charged residues, which results in conformational changes in the channel. Movements of the charged sensors can be detected as currents known as gating currents. Measurement of the gating currents of the Drosophila Shaker potassium channel indicates that the charge on the voltage sensor of the channels is progressively immobilized by prolonged depolarizations. The charge is not immobilized in a mutant of the channel that lacks inactivation. These results show that the region of the molecule responsible for inactivation interacts, directly or indirectly, with the voltage sensor to prevent the return of the charge to its original position. The gating transitions between closed states of the channel appear not to be independent, suggesting that the channel subunits interact during activation.

PubMed Disclaimer

Publication types

LinkOut - more resources