Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009:461:71-102.
doi: 10.1016/S0076-6879(09)05404-4.

Chapter 4. Interactions of chemokines with glycosaminoglycans

Affiliations

Chapter 4. Interactions of chemokines with glycosaminoglycans

Damon J Hamel et al. Methods Enzymol. 2009.

Abstract

Many proteins require interactions with cell surface glycosaminoglycans (GAGs) to exert their biologic activity. The effect of GAG binding on protein function ranges from essential roles in development, organogenesis, cell growth, cell adhesion, inflammation, tumorigenesis, and interactions with pathogens. A classic example is the role of GAGs in the interaction of fibroblast growth factors with their receptors, where GAGs play a role in specificity determination and control of receptor-ligand engagement. The other well-studied example involves the binding of antithrombin to heparin/heparan sulfate, which results in the inactivation of the coagulation cascade. In view of their specialized activity in cellular recruitment, chemokines interact with GAGs, minimally as a mechanism for localization of chemokines to specific anatomical spaces enabling them to act as directional signals for migrating cells. The biological relevance of these interactions has been recently demonstrated by functional characterization of mutants that are deficient in GAG binding. These mutants bind receptor normally in vitro but are unable to recruit cells in vivo. Observations like this have motivated investigations to identify GAG-binding epitopes on chemokines, the specificity and affinity of chemokines for different GAGs, the oligomerization of chemokines on GAGs, and the efficacy of GAG-binding mutants in the context of in vivo cell recruitment and animal models of disease. To this end, several techniques have been developed to measure the interactions of chemokines with GAGs. In this chapter we describe these various assays with particular reference to those that have been used to assess the binding of chemokines to GAGs and to define their epitopes. In the end, we believe both in vitro and in vivo characterization are absolutely necessary for understanding these interactions and their biologic relevance in the context of the whole organism.

PubMed Disclaimer

Publication types

LinkOut - more resources