Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 Jun;12(3):299-306.
doi: 10.1016/j.pbi.2009.04.008. Epub 2009 May 27.

Placing metal micronutrients in context: transport and distribution in plants

Affiliations
Review

Placing metal micronutrients in context: transport and distribution in plants

Sergi Puig et al. Curr Opin Plant Biol. 2009 Jun.

Abstract

Plants have developed finely tuned mechanisms to efficiently acquire and balance the concentrations of essential metal micronutrients including iron, zinc, copper, and manganese, both at the cellular and systemic levels. The application of new emerging technologies to the study of Arabidopsis thaliana is providing a novel spatiotemporal view of plant metal homeostasis. These advances are uncovering unexpected links of metal homeostasis to central cellular processes, such as compartmentalization, daily redox oscillations, or transcriptional regulation. The intracellular compartmentalization of metals seems essential for optimizing the use of micronutrients during development and in response to deficiencies. Furthermore, recent discoveries indicate that protein metallation is highly sensitive to surrounding conditions, including metal redox state and concentration. Thus, some steps in metal delivery occur during protein folding at specific intracellular compartments. Finally, the daily nature in redox oscillations should be taken into account for a comprehensive understanding of global plant metal homeostasis.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources