Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Oct 1;47(4):1215-20.
doi: 10.1016/j.neuroimage.2009.05.063. Epub 2009 May 28.

Amyloid plaques in PSAPP mice bind less metal than plaques in human Alzheimer's disease

Affiliations

Amyloid plaques in PSAPP mice bind less metal than plaques in human Alzheimer's disease

Andreana C Leskovjan et al. Neuroimage. .

Abstract

Amyloid beta (Abeta) is the primary component of Alzheimer's disease (AD) plaques, a key pathological feature of the disease. Metal ions of zinc (Zn), copper (Cu), iron (Fe), and calcium (Ca) are elevated in human amyloid plaques and are thought to be involved in neurodegeneration. Transgenic mouse models of AD also exhibit amyloid plaques, but fail to exhibit the high degree of neurodegeneration observed in humans. In this study, we imaged the Zn, Cu, Fe, and Ca ion distribution in the PSAPP transgenic mouse model representing end-stage AD (N=6) using synchrotron X-ray fluorescence (XRF) microprobe. In order to account for differences in density in the plaques, the relative protein content was imaged with synchrotron Fourier transform infrared microspectroscopy (FTIRM) on the same samples. FTIRM results revealed a 61% increase in protein content in the plaques compared to the surrounding tissue. After normalizing to protein density, we found that the PSAPP plaques contained only a 29% increase in Zn and there was actually less Cu, Fe, and Ca in the plaque compared to the surrounding tissue. Since metal binding to Abeta is thought to induce redox chemistry that is toxic to neurons, the reduced metal binding in PSAPP mice is consistent with the lack of neurodegeneration in these animals. These findings were in stark contrast to the high metal ion content observed in human AD plaques, further implicating the role of metal ions in human AD pathology.

PubMed Disclaimer

Figures

Figure 1
Figure 1
(A) Thioflavin S-stained PSAPP mouse brain tissue showing three plaques. (B) Infrared image of the same tissue showing the distribution of protein measured by the Amide II band. (C) Infrared spectra collected from the areas marked with asterisks in (A) and (B), showing the relative amount of protein in the center of a plaque (black) and the surrounding tissue (red). All scale bars are 5 μm.
Figure 2
Figure 2
(A) Thioflavin S-stained PSAPP mouse brain tissue, also shown in Fig. 1. XRF microprobe images of (B) Zn, (C) Cu, (D) Fe, and (E) Ca distribution in the same tissue. (F) XRF microprobe spectra collected from the areas marked with asterisks in (A) – (E), comparing the center of a plaque (black) to the surrounding tissue (red). All scale bars are 5 μm.

Similar articles

Cited by

References

    1. Arispe N, Pollard HB, Rojas E. The ability of amyloid β-protein [AβP (1–40)] to form Ca2+ channels provides a mechanism for neuronal death in Alzheimer’s disease. Ann N Y Acad Sci. 1994;747:256–266. - PubMed
    1. Atwood CS, Martins RN, Smith MA, Perry G. Senile plaque composition and posttranslational modification of amyloid-beta peptide and associated proteins. Peptides. 2002;23:1343–1350. - PubMed
    1. Atwood CS, Moir RD, Huang X, Scarpa RC, Bacarra NM, Romano DM, Hartshorn MA, Tanzi RE, Bush AI. Dramatic aggregation of Alzheimer Aβ by Cu(II) is induced by conditions representing physiological acidosis. J Biol Chem. 1998;273:12817–12826. - PubMed
    1. Atwood CS, Scarpa RC, Huang X, Moir RD, Jones WD, Fairlie DP, Tanzi RE, Bush AI. Characterization of copper interactions with alzheimer amyloid β peptides: identification of an attomolar-affinity copper binding site on amyloid β1–42. J Neurochem. 2000;75:1219–1233. - PubMed
    1. Borchelt DR, Ratovitski T, van Lare J, Lee MK, Gonzales V, Jenkins NA, Copeland NG, Price DL, Sisodia SS. Accelerated amyloid deposition in the brains of transgenic mice coexpressing mutant presenilin 1 and amyloid precursor proteins. Neuron. 1997;19:939–945. - PubMed

Publication types