Behavioral effects of agmatine in naive rats are task- and delay-dependent
- PMID: 19482065
- DOI: 10.1016/j.neuroscience.2009.05.061
Behavioral effects of agmatine in naive rats are task- and delay-dependent
Abstract
The present study systematically investigated the effects of agmatine administered i.p. in several commonly used behavioral tasks. In Experiment 1, pre-test treatment of agmatine (1 and 40 mg/kg) appeared to improve animals' performance in the water maze probe test conducted 24 h, but not 120 s, after training, when the effect was evaluated within subjects. In Experiment 2, pre-test agmatine treatment (40 mg/kg) did not affect animals' performance in the open field, and the place navigation, probe tests (1-4 and 6), reversal test and cued navigation in the water maze, but significantly facilitated performance in probe 5 which was conducted 96 h after training. In Experiment 3, rats with pre-test agmatine treatment (40 mg/kg) were less anxious relative to the controls, with no performance changes in the open field. In the water maze task, post-training agmatine treatment (40 mg/kg) did not affect place and cued navigation, but significantly improved animals' performance in the probe test conducted 24 h after training and the reversal test. In the working memory version of the task, agmatine treated rats took significantly less time and generated markedly shorter path length to reach the platform at the 180 s, but not 30 s, delay relative to the controls. In the object recognition task, rats with pre-test agmatine treatment (40 mg/kg) spent significantly more time exploring displaced objects, but not novel object, as compared to the controls. In Experiment 4, pre-test agmatine treatment (40 mg/kg) had no effect on the task acquisition in the delayed non-match to position task in the T-maze, but significantly facilitated performance at the 600 s delay. These results suggest that the behavioral effects of agmatine are task- and delay-dependent, and agmatine facilitates memory particularly when the task difficulty is increased due to memory trace decay and/or greater interference.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical