Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jun;212(Pt 12):1965-70.
doi: 10.1242/jeb.026153.

The independent effect of added mass on the stability of the sagittal plane leg kinematics during steady-state human walking

Affiliations

The independent effect of added mass on the stability of the sagittal plane leg kinematics during steady-state human walking

Christopher J Arellano et al. J Exp Biol. 2009 Jun.

Abstract

This study investigated the independent effect of added mass on the stability of the leg kinematics during human walking. We reasoned that adding mass would influence the body's inertial state and thus challenge the ability of the leg to redirect and accelerate the total mass of the body while walking. We hypothesized that walking with added mass would reduce the stability of the leg kinematics. Lower extremity sagittal plane joint kinematics were recorded for 23 subjects as they walked on a treadmill at their preferred speed with and without added mass. The total mass of each subject was manipulated with combinations of simulated reduced gravity and added load. The stability of the leg kinematics was evaluated by computing the eigenvalues of the Poincaré map (i.e. Floquet analysis) that defined the position and velocity of the right hip, knee and ankle at heel-contact and mid-swing. Significant differences in stability were found between the various added mass conditions (P=0.040) and instant in the gait cycle (P=0.001). Post-hoc analysis revealed that walking with 30% added mass compromised the stability of the leg kinematics compared with walking without additional mass (P=0.031). In addition, greater instability was detected at the instance of heel-contact compared with mid-swing (P=0.001). Our results reveal that walking with added mass gives rise to greater disturbances in the leg kinematics, and may be related to the redirection and acceleration of the body throughout the gait cycle. Walking with added mass reduces the stability of the leg kinematics and possibly the overall balance of the walking pattern.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources