Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jun;57(6):615-9.
doi: 10.1248/cpb.57.615.

Part 2: influence of 2-euryfuryl-1,4-naphthoquinone and its peri-hydroxy derivatives on both cell death and metabolism of TLT cells, a murine hepatoma cell line. modulation of cytotoxicity by vitamin C

Affiliations
Free article

Part 2: influence of 2-euryfuryl-1,4-naphthoquinone and its peri-hydroxy derivatives on both cell death and metabolism of TLT cells, a murine hepatoma cell line. modulation of cytotoxicity by vitamin C

Julio Benites et al. Chem Pharm Bull (Tokyo). 2009 Jun.
Free article

Abstract

2-Euryfuryl-1,4-naphthoquinone C(1) and its 5- and 5,8-hydroxy derivatives C(2) and C(3), were tested for their cytotoxicity towards transplantable liver tumor (TLT) cells (a murine hepatoma cell line) in the absence and in the presence of vitamin C. Cell death, caspase-3 activity and two metabolic end-points, namely the intracellular content of ATP and glutathione (GSH), were employed to evaluate their cytotoxicity. In a range of concentration from 0 to 10 microg/ml C(1) and C(3) were non toxic against TLT cells, while compound C(2) killed about 50% of cells by necrosis. Interestingly, the presence of vitamin C did not enhance the cytolysis of C(2), but its addition exacerbated the effects of the three compounds on both ATP and GSH contents, the two metabolic end points selected in our study. Our assumption is that the electron donor effect of the peri-hydroxyl substituents on euryfurylnaphthoquinones and the hydrogen bond between the peri-hydroxy and quinone carbonyl groups influence the electron-acceptor capability of the quinone nucleus and thus modifies the electron transfer from ascorbate to the electroactive quinone nucleus. The combination of euryfurylnaphthoquinones with vitamin C may be of potential clinical interest, because cancer cells accumulate vitamin C, they are sensitive to an oxidant insult and they depend on glycolysis (ATP formation) for their survival.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms