Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 May;8(3):327-37.
doi: 10.2174/157016110791112359.

The cardiovascular effects of metformin: further reasons to consider an old drug as a cornerstone in the therapy of type 2 diabetes mellitus

Affiliations
Review

The cardiovascular effects of metformin: further reasons to consider an old drug as a cornerstone in the therapy of type 2 diabetes mellitus

Giovanni Anfossi et al. Curr Vasc Pharmacol. 2010 May.

Abstract

Cardiovascular events occurring in type 2 diabetes (T2DM) are a major problem in clinical practice. In particular, the risk of myocardial infarction (MI) presented by patients affected by T2DM without previous cardiac events is similar to that of non-diabetic patients with previous MI. To reduce the elevated cardiovascular risk associated with T2DM, tight glycemic control and aggressive therapy against all known cardiovascular risk factors are strictly required. Despite the role played by hyperglycemia in the pathogenesis of cardiovascular events, studies showing an improvement of cardiovascular outcomes by anti-hyperglycemic or hypoglycemic agents are not conclusive. The United Kingdom Prospective Diabetes Study (UKPDS) demonstrated that in obese type 2 diabetic patients metformin reduces the risk of MI more than sulphonylureas or insulin. This observation identified metformin as the first-line treatment for T2DM. The vasoprotective role of metformin is largely independent of its hypoglycemic action and has been ascribed to pleiotropic effects. The present review considers the putative beneficial action exerted by metformin on arterial vessels by evaluating its effects on lipids, inflammation, hemostasis, endothelial and platelet function and vessel wall abnormalities. Furthermore, the molecular mechanisms of the beneficial metabolic and vascular effects of metformin will be considered, with a particular attention for its ability to activate AMP-activated protein kinase.

PubMed Disclaimer

Publication types

MeSH terms