Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jul;276(13):3575-88.
doi: 10.1111/j.1742-4658.2009.07077.x. Epub 2009 May 20.

Isolation and molecular characterization of a novel D-hydantoinase from Jannaschia sp. CCS1

Affiliations
Free article

Isolation and molecular characterization of a novel D-hydantoinase from Jannaschia sp. CCS1

Yuanheng Cai et al. FEBS J. 2009 Jul.
Free article

Abstract

Hydantoinases (HYDs) are important enzymes for industrial production of optically pure amino acids, which are widely used as precursors for various semi-synthetic antibiotics. By a process coupling genomic data mining with activity screening, a new hydantoinase, tentatively designated HYD(Js), was identified from Jannaschia sp. CCS1 and overexpressed in Escherichia coli. The specific activity of HYD(Js) on D,L-p-hydroxyphenylhydantoin as the substrate was three times higher than that of the hydantoinase originating from Burkholderia pickettii (HYD(Bp)) that is currently used in industry. The enzyme obtained was a homotetramer with a molecular mass of 253 kDa. The pH and temperature optima for HYD(Js) were 7.6 and 50 degrees C respectively, similar to those of HYD(Bp). Kinetic analysis showed that HYD(Js) has a higher k(cat) value on D,L-p-hydroxyphenylhydantoin than HYD(Bp) does. Homology modeling and substrate docking analyses of HYD(Js) and HYD(Bp) were performed, and the results revealed an enlarged substrate binding pocket in HYD(Js), which may allow better access of substrates to the catalytic centre and could account for the increased specific activity of HYD(Js). Three amino acid residues critical for HYD(Js) activity, Phe63, Leu92 and Phe150 were also identified by substrate docking and site-directed mutagenesis. Application of this high-specific activity HYD(Js) could improve the industrial production of optically pure amino acids, such as D-p-hydroxyphenylglycine. Moreover, the structural analysis also provides new insights on enzyme-substrate interaction, which shed light on engineering of hydantoinases for high catalytic activity.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources