Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 May 21;258(2):250-65.
doi: 10.1016/j.jtbi.2009.01.031. Epub 2009 Feb 7.

The effect of gene drive on containment of transgenic mosquitoes

Affiliations

The effect of gene drive on containment of transgenic mosquitoes

John M Marshall. J Theor Biol. .

Abstract

Mosquito-borne diseases such as malaria and dengue fever continue to be a major health problem through much of the world. Several new potential approaches to disease control utilize gene drive to spread anti-pathogen genes into the mosquito population. Prior to a release, these projects will require trials in outdoor cages from which transgenic mosquitoes may escape, albeit in small numbers. Most genes introduced in small numbers are very likely to be lost from the environment; however, gene drive mechanisms enhance the invasiveness of introduced genes. Consequently, introduced transgenes may be more likely to persist than ordinary genes following an accidental release. Here, we develop stochastic models to analyze the loss probabilities for several gene drive mechanisms, including homing endonuclease genes, transposable elements, Medea elements, the intracellular bacterium Wolbachia, engineered underdominance genes, and meiotic drive. We find that Medea and Wolbachia present the best compromise between invasiveness and containment for the six gene drive systems currently being considered for the control of mosquito-borne disease.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources