Specific interaction between tomato HsfA1 and HsfA2 creates hetero-oligomeric superactivator complexes for synergistic activation of heat stress gene expression
- PMID: 19491106
- PMCID: PMC2742850
- DOI: 10.1074/jbc.M109.007336
Specific interaction between tomato HsfA1 and HsfA2 creates hetero-oligomeric superactivator complexes for synergistic activation of heat stress gene expression
Abstract
In plants, a family of more than 20 heat stress transcription factors (Hsf) controls the expression of heat stress (hs) genes. There is increasing evidence for the functional diversification between individual members of the Hsf family fulfilling distinct roles in response to various environmental stress conditions and developmental signals. In response to hs, accumulation of both heat stress proteins (Hsp) and Hsfs is induced. In tomato, the physical interaction between the constitutively expressed HsfA1 and the hs-inducible HsfA2 results in synergistic transcriptional activation (superactivation) of hs gene expression. Here, we show that the interaction is strikingly specific and not observed with other class A Hsfs. Hetero-oligomerization of the two-component Hsfs is preferred to homo-oligomerization, and each Hsf in the HsfA1/HsfA2 hetero-oligomeric complex has its characteristic contribution to its function as superactivator. Distinct regions of the oligomerization domain are responsible for specific homo- and hetero-oligomeric interactions leading to the formation of hexameric complexes. The results are summarized in a model of assembly and function of HsfA1/A2 superactivator complexes in hs gene regulation.
Figures








Similar articles
-
Crosstalk between Hsp90 and Hsp70 chaperones and heat stress transcription factors in tomato.Plant Cell. 2011 Feb;23(2):741-55. doi: 10.1105/tpc.110.076018. Epub 2011 Feb 9. Plant Cell. 2011. PMID: 21307284 Free PMC article.
-
The tomato Hsf system: HsfA2 needs interaction with HsfA1 for efficient nuclear import and may be localized in cytoplasmic heat stress granules.Mol Cell Biol. 1998 Apr;18(4):2240-51. doi: 10.1128/MCB.18.4.2240. Mol Cell Biol. 1998. PMID: 9528795 Free PMC article.
-
Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance.Plant Physiol. 2011 Nov;157(3):1243-54. doi: 10.1104/pp.111.179036. Epub 2011 Sep 9. Plant Physiol. 2011. PMID: 21908690 Free PMC article.
-
Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need?Cell Stress Chaperones. 2001 Jul;6(3):177-89. doi: 10.1379/1466-1268(2001)006<0177:aathst>2.0.co;2. Cell Stress Chaperones. 2001. PMID: 11599559 Free PMC article. Review.
-
The plant heat stress transcription factor (Hsf) family: structure, function and evolution.Biochim Biophys Acta. 2012 Feb;1819(2):104-19. doi: 10.1016/j.bbagrm.2011.10.002. Epub 2011 Oct 17. Biochim Biophys Acta. 2012. PMID: 22033015 Review.
Cited by
-
Developmental and heat stress-regulated expression of HsfA2 and small heat shock proteins in tomato anthers.J Exp Bot. 2010;61(2):453-62. doi: 10.1093/jxb/erp316. Epub 2009 Oct 23. J Exp Bot. 2010. PMID: 19854799 Free PMC article.
-
Transcriptomic analysis of bell pepper (Capsicum annuum L.) revealing key mechanisms in response to low temperature stress.Mol Biol Rep. 2023 Oct;50(10):8431-8444. doi: 10.1007/s11033-023-08744-3. Epub 2023 Aug 25. Mol Biol Rep. 2023. PMID: 37624559
-
Plants and global warming: challenges and strategies for a warming world.Plant Cell Rep. 2024 Jan 2;43(1):27. doi: 10.1007/s00299-023-03083-w. Plant Cell Rep. 2024. PMID: 38163826 Review.
-
Crosstalk between Hsp90 and Hsp70 chaperones and heat stress transcription factors in tomato.Plant Cell. 2011 Feb;23(2):741-55. doi: 10.1105/tpc.110.076018. Epub 2011 Feb 9. Plant Cell. 2011. PMID: 21307284 Free PMC article.
-
Molecular mechanism analysis of LdHSFB2a in lily thermotolerance.Stress Biol. 2025 Jul 1;5(1):45. doi: 10.1007/s44154-025-00234-9. Stress Biol. 2025. PMID: 40588631 Free PMC article.
References
-
- Morimoto R. I. (1998) Genes Dev. 12, 3788–3796 - PubMed
-
- Baniwal S. K., Bharti K., Chan K. Y., Fauth M., Ganguli A., Kotak S., Mishra S. K., Nover L., Port M., Scharf K. D., Tripp J., Weber C., Zielinski D., von Koskull-Döring P. (2004) J. Biosci. 29, 471–487 - PubMed
-
- von Koskull-Döring P., Scharf K. D., Nover L. (2007) Trends Plant Sci. 12, 452–457 - PubMed
-
- Akerfelt M., Trouillet D., Mezger V., Sistonen L. (2007) Ann. N.Y. Acad. Sci. 1113, 15–27 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases