Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2009 Aug;138(2):257-66.
doi: 10.1530/REP-09-0105. Epub 2009 Jun 3.

Rapid rates of sperm DNA damage after activation in tench (Tinca tinca: Teleostei, Cyprinidae) measured using a sperm chromatin dispersion test

Affiliations
Comparative Study

Rapid rates of sperm DNA damage after activation in tench (Tinca tinca: Teleostei, Cyprinidae) measured using a sperm chromatin dispersion test

Carmen López-Fernández et al. Reproduction. 2009 Aug.

Abstract

Spermatozoal haplotypic DNA is prone to damage, leading to male fertility problems. So far, the assessment of sperm DNA breakage has been challenging because protamines render the nuclear chromatin highly compacted. Here, we report the application of a new test to quantify DNA fragmentation in spermatozoa of an externally fertilizing teleost fish. The sperm chromatin dispersion (SCD) test uses a species-specific lysing solution to generate controlled protein depletion that, followed by DNA-specific fluorescent labelling, allows an easy morphological discrimination between nuclei affected by DNA damage. Using tench (Tinca tinca) as our model, we first trialled the test against established, but more technically demanding, assays employing in situ nick translation (ISNT) and the comet assay. The SCD test showed high concordance with ISNT, comet assay measures and a chromatin-swelling test, confirming the application of this straightforward SCD technique to various aspects of reproductive biology. Second, we examined between-male variation in DNA damage, and measured changes through time following spermatozoal activation. Between-male variation in the basal levels of average DNA damage ranged from 0 to 20% of sperm showing damage, and all showed increases in DNA fragmentation through time (0-60 min). The rates of DNA damage increase are the fastest so far recorded in sperm for a living organism, and may relate to the external fertilization mode. Our findings have relevance for broodstock selection and optimizing IVF protocols routinely used in modern aquaculture.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources