Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jun 15;182(12):7718-28.
doi: 10.4049/jimmunol.0803313.

A20 negatively regulates T cell receptor signaling to NF-kappaB by cleaving Malt1 ubiquitin chains

Affiliations

A20 negatively regulates T cell receptor signaling to NF-kappaB by cleaving Malt1 ubiquitin chains

Michael Düwel et al. J Immunol. .

Abstract

The Carma1-Bcl10-Malt1 signaling module bridges TCR signaling to the canonical IkappaB kinase (IKK)/NF-kappaB pathway. Covalent attachment of regulatory ubiquitin chains to Malt1 paracaspase directs TCR signaling to IKK activation. Further, the ubiquitin-editing enzyme A20 was recently suggested to suppress T cell activation, but molecular targets for A20 remain elusive. In this paper, we show that A20 regulates the strength and duration of the IKK/NF-kappaB response upon TCR/CD28 costimulation. By catalyzing the removal of K63-linked ubiquitin chains from Malt1, A20 prevents sustained interaction between ubiquitinated Malt1 and the IKK complex and thus serves as a negative regulator of inducible IKK activity. Upon T cell stimulation, A20 is rapidly removed and paracaspase activity of Malt1 has been suggested to cleave A20. Using antagonistic peptides or reconstitution of Malt1(-/-) T cells, we show that Malt1 paracaspase activity is required for A20 cleavage and optimal IL-2 production, but dispensable for initial IKK/NF-kappaB signaling in CD4(+) T cells. However, proteasomal inhibition impairs A20 degradation and impedes TCR/CD28-induced IKK activation. Taken together, A20 functions as a Malt1 deubiquitinating enzyme and proteasomal degradation and de novo synthesis of A20 contributes to balance TCR/CD28-induced IKK/NF-kappaB signaling.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources