Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009:16:103-119.
doi: 10.1159/000219375. Epub 2009 Jun 2.

Stand-alone response regulators controlling global virulence networks in streptococcus pyogenes

Review

Stand-alone response regulators controlling global virulence networks in streptococcus pyogenes

Kevin S McIver. Contrib Microbiol. 2009.

Abstract

Global regulation of virulence gene expression via transcriptional regulators plays a central role in the ability of the bacterial pathogen Streptococcus pyogenes (the group A Streptococcus, GAS) to rapidly adapt during infection. The 'stand-alone' regulators Mga, RofA-like proteins (RALPs), and RopB/Rgg control important and diverse virulence regulons in response to growth-related signals and other environmental conditions in GAS. Stand-alone regulated genes encode factors important for colonization of tissues, immune evasion, persistence, dissemination, metabolism, and the response to stressors. Although conserved 'core' regulons have been established for each, recent studies have revealed significant inter-serotype and even intra-serotype variation in the regulatory patterns presented by the stand-alone regulators. This chapter will look at each stand-alone regulatory pathway in depth and discuss how these important global networks influence virulence as well as interact with each other to produce an integrated response during GAS infection.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources