Total internal reflection fluorescence correlation spectroscopy (TIR-FCS) with low background and high count-rate per molecule
- PMID: 19498766
- DOI: 10.1364/opex.13.007415
Total internal reflection fluorescence correlation spectroscopy (TIR-FCS) with low background and high count-rate per molecule
Abstract
We designed a fluorescence correlation spectroscopy (FCS) system for measurements on surfaces. The system consists of an objective-type total internal reflection fluorescence (TIRF) microscopy setup, adapted to measure FCS. Here, the fluorescence exciting evanescent wave is generated by epi-illumination through the periphery of a high NA oil-immersion objective. The main advantages with respect to conventional FCS systems are an improvement in terms of counts per molecule (cpm) and a high signal to background ratio. This is demonstrated by investigating diffusion as well as binding and release of single molecules on a glass surface. Furthermore, the size and shape of the molecule detection efficiency (MDE) function was calculated, using a wave-vectorial approach and taking into account the influence of the dielectric interface on the emission properties of fluorophores.
Similar articles
-
A total internal reflection-fluorescence correlation spectroscopy setup with pulsed diode laser excitation.Rev Sci Instrum. 2017 Sep;88(9):093102. doi: 10.1063/1.4986235. Rev Sci Instrum. 2017. PMID: 28964231
-
Note: An easy way to enable total internal reflection-fluorescence correlation spectroscopy (TIR-FCS) by combining commercial devices for FCS and TIR microscopy.Rev Sci Instrum. 2011 Mar;82(3):036105. doi: 10.1063/1.3557412. Rev Sci Instrum. 2011. PMID: 21456807
-
Total internal reflection with fluorescence correlation spectroscopy.Nat Protoc. 2007;2(4):878-90. doi: 10.1038/nprot.2007.110. Nat Protoc. 2007. PMID: 17446873
-
New light on ion channel imaging by total internal reflection fluorescence (TIRF) microscopy.J Pharmacol Sci. 2015 May;128(1):1-7. doi: 10.1016/j.jphs.2015.04.004. Epub 2015 Apr 15. J Pharmacol Sci. 2015. PMID: 26002253 Review.
-
Fluorescence correlation spectroscopy: linking molecular dynamics to biological function in vitro and in situ.Curr Opin Struct Biol. 2011 Oct;21(5):650-60. doi: 10.1016/j.sbi.2011.06.006. Epub 2011 Jul 21. Curr Opin Struct Biol. 2011. PMID: 21767945 Review.
Cited by
-
Dynamic pattern generation in cell membranes: Current insights into membrane organization.Biochim Biophys Acta Biomembr. 2018 Oct;1860(10):2018-2031. doi: 10.1016/j.bbamem.2018.05.002. Epub 2018 May 9. Biochim Biophys Acta Biomembr. 2018. PMID: 29752898 Free PMC article. Review.
-
Measuring surface binding thermodynamics and kinetics by using total internal reflection with fluorescence correlation spectroscopy: practical considerations.J Phys Chem B. 2011 Jan 13;115(1):120-31. doi: 10.1021/jp1069708. Epub 2010 Dec 17. J Phys Chem B. 2011. PMID: 21166379 Free PMC article.
-
Computational Proposal for Tracking Multiple Molecules in a Multifocus Confocal Setup.ACS Photonics. 2022 Jul 20;9(7):2489-2498. doi: 10.1021/acsphotonics.2c00614. Epub 2022 Jul 7. ACS Photonics. 2022. PMID: 36051355 Free PMC article.
-
Fluorescence correlation spectroscopy: a review of biochemical and microfluidic applications.Appl Spectrosc. 2011 Apr;65(4):115A-124A. doi: 10.1366/10-06224. Appl Spectrosc. 2011. PMID: 21396180 Free PMC article. Review.
-
Total internal reflection with fluorescence correlation spectroscopy: Applications to substrate-supported planar membranes.J Struct Biol. 2009 Oct;168(1):95-106. doi: 10.1016/j.jsb.2009.02.013. Epub 2009 Mar 6. J Struct Biol. 2009. PMID: 19269331 Free PMC article.
LinkOut - more resources
Full Text Sources