Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2009 Aug 11:1284:12-21.
doi: 10.1016/j.brainres.2009.05.072. Epub 2009 Jun 6.

Closing the gap between the in-vivo and in-vitro blood-brain barrier tightness

Affiliations
Comparative Study

Closing the gap between the in-vivo and in-vitro blood-brain barrier tightness

Katayun Cohen-Kashi Malina et al. Brain Res. .

Abstract

Numerous in-vitro models of the blood-brain barrier (BBB) have been developed in the hope to mimic as closely as possible the in-vivo BBB characteristics. Most models however display BBB tightness properties still very remote from those found in-vivo. We describe here the properties of an in-vitro BBB model in three configurations: primary porcine brain endothelial cells (PBEC) grown in a monoculture, or as a co-culture in close proximity to rat glial cells (contact), or with the latter at distance (non-contact). The BBB tightness as reflected by measurements of the permeability (Pe) to sucrose and of the transendothelial electrical resistance (TEER) showed that only the contact co-culture closely mimic the in-vivo BBB (Pe=0.1910(-6)+/-0.01 cm/s and TEER up to 1650 Omegacm2). While no changes in the expression pattern of three of the major tight junction proteins, claudin-5, occludin and ZO-1, were observed using immunohistochemistry, western blot analysis showed that the expression levels of claudin-5 and occludin increase when PBEC are cultured in contact with glial cells. In addition, we found, in the contact co-culture model, a reduced sensitivity of the TEER to vinblastine, a P-glycoprotein (Pgp) substrate that disrupts the cell cytoskeleton, indicating an improved functionality of the Pgp transporters in this configuration. We conclude that the close proximity of astrocytes is crucial to the development of a tight BBB.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources