Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Aug 13;378(1-2):93-100.
doi: 10.1016/j.ijpharm.2009.05.050. Epub 2009 Jun 6.

Molecular charge mediated transport of a 13 kD protein across microporated skin

Affiliations

Molecular charge mediated transport of a 13 kD protein across microporated skin

Sahitya Katikaneni et al. Int J Pharm. .

Abstract

Transport of proteins across the skin is highly limited owing to their hydrophilic nature and large molecular size. This study was conducted to assess the skin transport abilities of a model protein across hairless rat skin during iontophoresis alone and in combination with microneedles as a function of molecular charge. The effect of microneedle pretreatment on electroosmotic flow was also investigated. Skin permeation experiments were carried out in vitro using daniplestim (DP) (MW, 12.76 kD; isoelectric point, 6.2) as a model protein molecule. The effect of molecular charge on protein transport was evaluated by performing studies in two different buffers--TRIS (pH 7.5) and acetate (pH 4.0). Iontophoretic transport mechanisms of DP varied with respect to molecular charge on the protein. The combination approach (iontophoresis and microneedles) gave much higher flux values compared to iontophoresis alone at both pH 4.0 and pH 7.5, however, the delivery in this case was also found to be charge dependent. The findings of this study indicate that electroosmosis persisted upon microporation, thus retaining skin's permselective properties. This enables us to explore the combination of microneedles and iontophoresis as a potential approach for delivery of proteins.

PubMed Disclaimer

Publication types

LinkOut - more resources