Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jul;103(7):1045-53.
doi: 10.1016/j.jinorgbio.2009.04.018. Epub 2009 May 13.

Syntheses, crystal structure, spectroscopic characterization and antifungal activity of new N-R-sulfonyldithiocarbimate metal complexes

Affiliations

Syntheses, crystal structure, spectroscopic characterization and antifungal activity of new N-R-sulfonyldithiocarbimate metal complexes

Leandro C Alves et al. J Inorg Biochem. 2009 Jul.

Abstract

Five new compounds with the general formula of (Bu(4)N)(2)[M(RSO(2)NCS(2))(2)], where Bu(4)N=tetrabutylammonium cation, (M=Ni, R=4-FC(6)H(4)) (1), (M=Zn, R=4-FC(6)H(4), 4-ClC(6)H(4), 4-BrC(6)H(4), 4-IC(6)H(4)), (2), (3), (4) and (5), respectively, were obtained by the reaction of the appropriate potassium N-R-sulfonyldithiocarbimate (RSO(2)N=CS(2)K(2)) with nickel(II) chloride hexahydrate or zinc(II) acetate dihydrate in metanol:water 1:1. The elemental analyses and the IR data are consistent with the formation of the expected bis(dithiocarbimato)metal(II) complexes. The (1)H and (13)C NMR spectra showed the signals for the tetrabutylammonium cation and the dithiocarbimate moieties. The compounds 1, 2 and 5 were also characterized by X-ray diffraction techniques. The nickel(II) is coordinated by two N-4-fluorophenylsulphonyldithiocarbimato(2-) ligands forming a planar coordination. The zinc(II) exhibits distorted tetrahedral configuration in compounds 2 and 5 due to the chelation effect of two sulfur atoms of the N-R-sulfonyldithiocarbimate ligands. The antifungal activities of the compounds were tested in vitro against Colletotrichum gloeosporioides, an important fungus that causes the plant disease known as anthracnose in fruit trees. All the complexes were active.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources