Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jul;21(7):881-9.
doi: 10.1093/intimm/dxp054. Epub 2009 Jun 7.

Gfi1 negatively regulates T(h)17 differentiation by inhibiting RORgammat activity

Affiliations

Gfi1 negatively regulates T(h)17 differentiation by inhibiting RORgammat activity

Kenji Ichiyama et al. Int Immunol. 2009 Jul.

Abstract

T(h) cells have long been divided into two subsets, T(h)1 and T(h)2; however, recently, T(h)17 and inducible regulatory T (iTreg) cells were identified as new T(h) cell subsets. Although T(h)1- and T(h)2-polarizing cytokines have been shown to suppress T(h)17 and iTreg development, transcriptional regulation of T(h)17 and iTreg differentiation by cytokines remains to be clarified. In this study, we found that expression of the growth factor independent 1 (Gfi1) gene, which has been implicated in T(h)2 development, was repressed in T(h)17 and iTreg cells compared with T(h)1 and T(h)2 lineages. Gfi1 expression was enhanced by the IFN-gamma/STAT1 and IL-4/STAT6 pathways, whereas it was repressed by the transforming growth factor-beta1 stimulation at the promoter level. Over-expression of Gfi1 strongly reduced IL-17A transcription in the EL4 T cell line, as well as in primary T cells. This was due to the blockade of recruitment of retinoid-related orphan receptor gammat to the IL-17A promoter. In contrast, IL-17A expression was significantly enhanced in Gfi1-deficient T cells under T(h)17-promoting differentiation conditions as compared with wild-type T cells. In contrast, the impacts of Gfi1 in iTregs were not as strong as in T(h)17 cells. Taken together, these data strongly suggest that Gfi1 is a negative regulator of T(h)17 differentiation, which represents a novel mechanism for the regulation of T(h)17 development by cytokines.

PubMed Disclaimer

Publication types

MeSH terms