Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jul 9;52(13):3846-54.
doi: 10.1021/jm900097m.

Discovery of (2R)-2-(3-{3-[(4-Methoxyphenyl)carbonyl]-2-methyl-6-(trifluoromethoxy)-1H-indol-1-yl}phenoxy)butanoic acid (MK-0533): a novel selective peroxisome proliferator-activated receptor gamma modulator for the treatment of type 2 diabetes mellitus with a reduced potential to increase plasma and extracellular fluid volume

Affiliations

Discovery of (2R)-2-(3-{3-[(4-Methoxyphenyl)carbonyl]-2-methyl-6-(trifluoromethoxy)-1H-indol-1-yl}phenoxy)butanoic acid (MK-0533): a novel selective peroxisome proliferator-activated receptor gamma modulator for the treatment of type 2 diabetes mellitus with a reduced potential to increase plasma and extracellular fluid volume

John J Acton 3rd et al. J Med Chem. .

Erratum in

  • J Med Chem. 2013 Nov 27;56(22):9368. Tan, Yugen [corrected to Tan, Yejun]

Abstract

Peroxisome proliferator-activated receptor gamma (PPARgamma) agonists are used to treat type 2 diabetes mellitus (T2DM). Widespread use of PPARgamma agonists has been prevented due to adverse effects including weight gain, edema, and increased risk of congestive heart failure. Selective PPARgamma modulators (SPPARgammaMs) have been identified that have antidiabetic efficacy and reduced toxicity in preclinical species. In comparison with PPARgamma full agonists, SPPARgammaM 6 (MK0533) displayed diminished maximal activity (partial agonism) in cell-based transcription activation assays and attenuated gene signatures in adipose tissue. Compound 6 exhibited comparable efficacy to rosiglitazone and pioglitazone in vivo. However, with regard to the induction of untoward events, 6 displayed no cardiac hypertrophy, attenuated increases in brown adipose tissue, minimal increases in plasma volume, and no increases in extracellular fluid volume in vivo. Further investigation of 6 is warranted to determine if the improvement in mechanism-based side effects observed in preclinical species will be recapitulated in humans.

PubMed Disclaimer

LinkOut - more resources