Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008;1(2):196-8.
doi: 10.4161/cib.1.2.7144.

The fate of gene duplicates in the genomes of fungal pathogens

Affiliations

The fate of gene duplicates in the genomes of fungal pathogens

Pari Skamnioti et al. Commun Integr Biol. 2008.

Abstract

Understanding how molecular changes underlie phenotypic variation within and between species is one of the main goals of evolutionary biology and comparative genetics. The recent proliferation of sequenced fungal genomes offers a unique opportunity to start elucidating the extreme phenotypic diversity in the Kingdom Fungi.1-4 We attempted to investigate the contribution of gene families to the evolutionary forces shaping the diversity of pathogenic lifestyles among the fungi.5 We studied a family of secreted enzymes which is present and expanded in all genomes of fungal pathogens sequenced to date and absent from the genomes of true yeasts.3,4 This family of cutinases6 predates the division between the two major fungal phyla, Ascomycota and Basidiomycota.5 We discuss our molecular phylogenetic analyses, the number and sequence diversity, and gene gains and losses of cutinase family members between five Ascomycetes: the phytopathogens Magnaporthe oryzae, Fusarium graminearum and Botrytis cinerea; and the model organisms Neurospora crassa and Aspergillus nidulans.5 The functional characterization of three members of the M. oryzae cutinase family,6-10 coupled with the regulatory subfunctionalization and neofunctionalization of most gene pairs5 provide the first justification for the retention of paralogs after duplication and for gene redundancy in the genomes of fungal pathogens.

Keywords: ascomycota; cutinase; duplication; evolution; expression; gene family; gene gain; magnaporthe; neofunctionalization; pezizomycotina; redundancy; subfunctionalization.

PubMed Disclaimer

References

    1. Cornell MJ, Alam I, Soanes DM, Wong HM, Hedeler C, Paton NW, Rattray M, Hubbard SJ, Talbot NJ, Oliver SG. Comparative genome analysis across a kingdom of eukaryotic organisms: Specialization and diversification in the Fungi. Genom Res. 2007;17:1809–1822. - PMC - PubMed
    1. Wapinski I, Pfeffer A, Friedman N, Regev A. Natural history and evolutionary principles of gene duplication in fungi. Nature. 2007;449:54–61. - PubMed
    1. Arvas M, Kivioja T, Mitchell A, Saloheimo M, Ussery D, Penttila M, Oliver S. Comparison of protein coding gene contents of the fungal phyla Pezizomycotina and Saccharomycotina. BMC Genom. 2007;8:325. - PMC - PubMed
    1. Soanes DM, Alam I, Cornell M, Wong HM, Hedeler C, Paton NW, Rattray M, Hubbard SJ, Oliver SG, Talbot NJ. Comparative genome analysis of filamentous fungi reveals gene family expansions associated with fungal pathogenesis. PLoS One. 2008:2300. - PMC - PubMed
    1. Skamnioti P, Furlong RF, Gurr SJ. Evolutionary history of the ancient cutinase family in five filamentous Ascomycetes reveals differential gene duplications and losses and in Magnaporthe grisea shows evidence of sub- and neo-functionalization. New Phytol. 2008;180:711–721. - PubMed

LinkOut - more resources