Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jul;41(7):1504-9.
doi: 10.1249/MSS.0b013e31819b3607.

Central activation and force-frequency responses of the lumbar extensor muscles

Affiliations

Central activation and force-frequency responses of the lumbar extensor muscles

David W Russ et al. Med Sci Sports Exerc. 2009 Jul.

Abstract

Purpose: To determine the central activation and force-frequency properties of a muscle group in which these data have not previously been reported (i.e., the lumbar extensors).

Methods: Fifteen young healthy participants were tested. Maximal voluntary isometric contraction (MVIC) of the trunk was collected using a custom apparatus with a cable-mounted load cell. Central activation was determined by delivering a supramaximal 100-ms, 100-Hz train to the lumbar muscles during the MVIC. The MVIC and the stimulated forces were used to calculate the central activation ratio (CAR) for each subject using the formula CAR = MVIC force / (MVIC + stimulated force), with a value of 1 indicating full central activation. Force-frequency relationship of the muscle group was determined by stimulating the muscles every 10 s with two 500-ms trains of the following frequencies: 1, 5, 10, 20, 40, 60, 80, and 100 Hz. The force-frequency data were fit with a four-parameter Hill equation to obtain the frequency at which 50% of the range of forces generated by the various stimulation trains is produced (F50) and the Hill coefficient, which indicates the steepness of the linear portion of the relationship.

Results: Mean MVIC was 345.4 N (SD = 126.7), and mean CAR was 0.95 (SD = 0.06). The force-frequency data showed a mean F50 of 16.40 Hz (SD = 3.15) and a mean Hill coefficient of 2.21 (SD = 0.50).

Conclusions: Central activation and force-frequency testing of the lumbar extensor muscles is feasible, and the data reported here represent, to our knowledge, the first of their kind in this muscle group.

PubMed Disclaimer

Publication types

LinkOut - more resources