Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jul;41(7):1461-6.
doi: 10.1249/MSS.0b013e318199eb75.

Central fatigue after cycling evaluated using peripheral magnetic stimulation

Affiliations

Central fatigue after cycling evaluated using peripheral magnetic stimulation

Ian J Kremenic et al. Med Sci Sports Exerc. 2009 Jul.

Abstract

Central and peripheral mechanisms contribute to fatigue during exercise. Electrical and transcranial magnetic stimulation have been used to assess these fatigue mechanisms. Peripheral magnetic stimulation (PMS) of the femoral nerve is associated with very little subject discomfort and has been shown to elicit quadriceps contractions of >70% maximal voluntary contraction (MVC).

Purpose: To examine peripheral versus central mechanisms of fatigue in men during prolonged cycling using a peripheral nerve magnetic stimulation-based technique.

Methods: Eleven men (aged 41 +/- 3 yr) cycled for 2 h at approximately 66% of VO2peak (55 +/- 2 mL x kg(-1) x min(-1)) with five 1-min sprints interspersed, followed by a 3-km time trial. Oxygen consumption was measured every 20 min to verify a constant workload. RPE were measured simultaneously and during each sprint using a Borg scale. Quadriceps isometric strength testing was performed in a seated position before and after cycling: 1) MVC, 2) MVC with superimposed magnetic stimulation to measure central activation ratio (CAR), 3) femoral nerve stimulation alone. One-minute recoveries were allowed between contractions. Changes in metabolic measurements over time were analyzed with repeated-measures ANOVA, and strength changes before to after with Student's paired t-tests.

Results: HR (P = 0.03) and RPE (P < 0.001) increased over time during the 2 h, and MVC declined by 22% (P = 0.001) indicating fatigue. Force elicited by PMS alone decreased 17% (P < 0.001). CAR decreased from 83% before exercise to 71% (P = 0.005) after exercise indicating a loss of central drive. PMS-induced force was > or =90% of MVC.

Conclusions: Results clearly demonstrate that trained cyclists experience significant central fatigue during prolonged cycling. PMS may be a better technique for identifying central fatigue than the traditionally used interpolated twitch technique.

PubMed Disclaimer

LinkOut - more resources