Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008;9(5):349-60.
doi: 10.2174/138920208785133235.

Can systems biology understand pathway activation? Gene expression signatures as surrogate markers for understanding the complexity of pathway activation

Affiliations

Can systems biology understand pathway activation? Gene expression signatures as surrogate markers for understanding the complexity of pathway activation

Hiraku Itadani et al. Curr Genomics. 2008.

Abstract

Cancer is thought to be caused by a sequence of multiple genetic and epigenetic alterations which occur in one or more of the genes controlling cell cycle progression and signaling transduction. The complexity of carcinogenic mechanisms leads to heterogeneity in molecular phenotype, pathology, and prognosis of cancers.Genome-wide mutational analysis of cancer genes in individual tumors is the most direct way to elucidate the complex process of disease progression, although such high-throughput sequencing technologies are not yet fully developed. As a surrogate marker for pathway activation analysis, expression profiling using microarrays has been successfully applied for the classification of tumor types, stages of tumor progression, or in some cases, prediction of clinical outcomes. However, the biological implication of those gene expression signatures is often unclear. Systems biological approaches leverage the signature genes as a representation of changes in signaling pathways, instead of interpreting the relevance between each gene and phenotype. This approach, which can be achieved by comparing the gene set or the expression profile with those of reference experiments in which a defined pathway is modulated, will improve our understanding of cancer classification, clinical outcome, and carcinogenesis. In this review, we will discuss recent studies on the development of expression signatures to monitor signaling pathway activities and how these signatures can be used to improve the identification of responders to anticancer drugs.

Keywords: Expression signature; cancer therapy; drug discovery; signaling pathway; systems biology..

PubMed Disclaimer

Figures

Fig. (1)
Fig. (1)
Methods to develop pathway signatures. Gene expression regulated by signaling pathways can be detected by comparing pathway-activated vs. quiescent cells or baseline-level vs. inactivated cells using gene expression microarrays (See text for detail).
Fig. (2)
Fig. (2)
Expected application of pathway signatures to personalized medicine. In many diseases including cancer, the disorder is caused by deregulation of cellular signaling. Pathway signatures can be a novel tool to assess signaling statuses. The pathway activation/inactivation status in each patient will be monitored by the expression profile and a set of pathway signatures. Identification of the causative pathway allows us to select the "right" drug to inhibit the pathway.
Fig. (3)
Fig. (3)
Response to pathway inhibitors of tumor cells depends on the mechanism of pathway activation. (a) Tumor cells with EGFR mutation are sensitive to EGFR inhibitor gefitinib or erlotinib, whereas those with RAS mutation are resistant to the same drug, because RAF-MEK-ERK signaling is not inhibited by the drugs. (b) When the PI3K pathway is hyperactivated by PI3K mutation or by PTEN loss, tumor cells are sensitive to rapamycin, which inhibits mTOR downstream of the pathway. However, the HER2 inhibitor Herceptin cannot stop the deregulated signal, because it does not inhibit hyperactivation downstream.

References

    1. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70. - PubMed
    1. Parsons DW, Wang TL, Samuels Y, Bardelli A, Cummins JM, DeLong L, Silliman N, Ptak J, Szabo S, Willson JKV, Markowitz S, Kinzler K, Vogelstein B, Lengauer C, Velculescu VE. Colorectal cancer - Mutations in a signalling pathway. Nature. 2005;436:792. - PubMed
    1. Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ, Shen D, Boca SM, Barber T, Ptak J, Silliman N, Szabo S, Dezso Z, Ustyanksky V, Nikolskaya T, Nikolsky Y, Karchin R, Wilson PA, Kaminker JS, Zhang ZM, Croshaw R, Willis J, Dawson D, Shipitsin M, Willson JKV, Sukumar S, Polyak K, Park BH, Pethiyagoda CL, Pant PVK, Ballinger DG, Sparks AB, Hartigan J, Smith DR, Suh E, Papadopoulos N, Buckhaults P, Markowitz SD, Parmigiani G, Kinzler KW, Velculescu VE, Vogelstein B. The genomic landscapes of human breast and colorectal cancers. Science. 2007;318:1108–1113. - PubMed
    1. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, Davies H, Teague J, Butler A, Edkins S, O'Meara S, Vastrik I, Schmidt EE, Avis T, Barthorpe S, Bhamra G, Buck G, Choudhury B, Clements J, Cole J, Dicks E, Forbes S, Gray K, Halliday K, Harrison R, Hills K, Hinton J, Jenkinson A, Jones D, Menzies A, Mironenko T, Perry J, Raine K, Richardson D, Shepherd R, Small A, Tofts C, Varian J, Webb T, West S, Widaa S, Yates A, Cahill DP, Louis DN, Goldstraw P, Nicholson AG, Brasseur F, Looijenga L, Weber BL, Chiew YE, Defazio A, Greaves MF, Green AR, Campbell P, Birney E, Easton DF, Chenevix-Trench G, Tan MH, Khoo SK, Teh BT, Yuen ST, Leung SY, Wooster R, Futreal PA, Stratton MR. Patterns of somatic mutation in human cancer genomes. Nature. 2007;446:153–158. - PMC - PubMed
    1. Thomas RK, Baker AC, DeBiasi RM, Winckler W, LaFramboise T, Lin WM, Wang M, Feng W, Zander T, MacConnaill LE, Lee JC, Nicoletti R, Hatton C, Goyette M, Girard L, Majmudar K, Ziaugra L, Wong KK, Gabriel S, Beroukhim R, Peyton M, Barretina J, Dutt A, Emery C, Greulich H, Shah K, Sasaki H, Gazdar A, Minna J, Armstrong SA, Mellinghoff IK, Hodi FS, Dranoff G, Mischel PS, Cloughesy TF, Nelson SF, Liau LM, Mertz K, Rubin MA, Moch H, Loda M, Catalona W, Fletcher J, Signoretti S, Kaye F, Anderson KC, Demetri GD, Dummer R, Wagner S, Herlyn M, Sellers WR, Meyerson M, Garraway LA. High-throughput oncogene mutation profiling in human cancer. Nat. Genet. 2007;39:347–351. - PubMed