Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 Jun;12(5):497-506.
doi: 10.2174/138620709788489082.

Recent developments of in silico predictions of intestinal absorption and oral bioavailability

Affiliations
Review

Recent developments of in silico predictions of intestinal absorption and oral bioavailability

Tingjun Hou et al. Comb Chem High Throughput Screen. 2009 Jun.

Abstract

Among the absorption, distribution, metabolism, elimination, and toxicity properties (ADMET), unfavorable oral bioavailability is indeed an important reason for stopping further development of the drug candidates. Thus, predictions of oral bioavailability and bioavailability-related properties, especially intestinal absorption are areas in need of progress to aid pharmaceutical drug development. In this article, we review recent developments in the prediction of passive intestinal absorption and oral bioavailability. The advances in the datasets used for model building, the molecular descriptors, the prediction models, and the statistical modeling techniques, are summarized. Furthermore, we compared the performance of one machine learning method, support vector machines (SVM), and one traditional classification method, recursive partitioning (RP), on the predictions of passive absorption. Our comparisons demonstrate that the complex machine learning method could give better predictions than the traditional approach. Finally we discuss the current challenges that remain to be addressed.

PubMed Disclaimer

Substances