Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Nov;75(5):896-902.
doi: 10.1097/00000542-199111000-00023.

A minimal-flow system for xenon anesthesia

Affiliations

A minimal-flow system for xenon anesthesia

H H Luttropp et al. Anesthesiology. 1991 Nov.

Abstract

We described a minimal-flow system for xenon anesthesia during controlled ventilation. A computer maintained oxygen concentration in the anesthesia circle within +/- 2% of the value set by the anesthesiologist. The ventilator and the circle were connected via a large dead space, through which oxygen from the ventilator entered the circle but which prevented xenon from escaping. This arrangement simplified the computer program. The system was tested on a lung model and in six pigs (37-39 kg). The xenon expenditure and the amount of xenon washed out from the pigs after the anesthetic were measured. Additional experiments with nitrous oxide were made in three pigs. The xenon expenditure during 2 h of xenon anesthesia was 7.6 +/- 0.8 l (mean +/- 1 standard deviation). The corresponding expenditure of nitrous oxide was 16.5 +/- 2.7 l. About 75% of the xenon expenditure was in the 1st h of anesthesia; thereafter 20-40 ml.min-1 was needed to maintain oxygen concentration at 30%. Nitrogen concentration in the circle increased to 12-16% during the xenon anesthetic, although it was preceded by a 20 min denitrogenation period. During the washout phase after the xenon anesthesia, mean expired xenon concentration decreased to below 2% within 4 min. Subsequently, washout was slower and the expired concentration remained above 0.1% for more than 90 min. The estimated total amount of xenon washed out from the lungs and body tissues during 4 h of oxygen breathing was about 4 l. We conclude that xenon anesthesia via a fully automated minimal-flow system is feasible.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources