Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jul 8;131(26):9189-91.
doi: 10.1021/ja903084a.

Reactivity-dependent PCR: direct, solution-phase in vitro selection for bond formation

Affiliations
Free PMC article

Reactivity-dependent PCR: direct, solution-phase in vitro selection for bond formation

David J Gorin et al. J Am Chem Soc. .
Free PMC article

Abstract

In vitro selection is a key component of efforts to discover functional nucleic acids and small molecules from libraries of DNA, RNA, and DNA-encoded small molecules. Such selections have been widely used to evolve RNA and DNA catalysts and, more recently, to discover new reactions from DNA-encoded libraries of potential substrates. While effective, current strategies for selections of bond-forming and bond-cleaving reactivity are generally indirect, require the synthesis of biotin-linked substrates, and involve multiple solution-phase and solid-phase manipulations. In this work we report the successful development and validation of reactivity-dependent PCR (RDPCR), a new method that more directly links bond formation or bond cleavage with the amplification of desired sequences and that obviates the need for solid-phase capture, washing, and elution steps. We show that RDPCR can be used to select for bond formation in the context of reaction discovery and for bond cleavage in the context of protease activity profiling.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Traditional approaches to in vitro selection.
Figure 2
Figure 2
Principles underlying reactivity-dependent PCR (RDPCR). Conditions in (a): 10 nM DNA, 2 mM Mg2+, 100 mM NaCl.
Figure 3
Figure 3
Comparison of PCR efficiency of intramolecularly primed versus intermolecularly primed DNA templates. PCR conditions for PAGE samples: 19 fmol of 8 or 19 fmol of 4a+5 in 30 μL, 25 cycles.
Figure 4
Figure 4
Non-natural hairpin linkers support self-priming PCR. R = (CH2)6OH.
Figure 5
Figure 5
Selectivity of RDPCR in a library-format mock selection. PCR conditions: 19 fmol of 12 and 13 in 60 μL, 25−35 cycles.
Figure 6
Figure 6
RDPCR-based DNA-encoded reaction discovery selection. PCR conditions for PAGE samples: 1 fmol of 9 in 20 μL, 23 cycles.
Figure 7
Figure 7
RDPCR-based protease-mediated peptide cleavage selection. PCR conditions for PAGE samples: 19 fmol of DNA in 30 μL, 23 cycles (lanes 1−5) or 25 cycles (lanes 6−9). D = DMT-MM; E = EDC + sNHS.

References

    1. Seminal reports:

    2. Tuerk C.; Gold L. Science 1990, 249, 505. - PubMed
    3. Ellington A. D.; Szostak J. W. Nature 1990, 346, 818. - PubMed
    4. Robertson D. L.; Joyce G. F. Nature 1990, 344, 467. - PubMed
    5. For a general review, see:

    6. Wilson D. S.; Szostak J. W. Annu. Rev. Biochem. 1999, 68, 611. - PubMed
    1. Recent reviews of evolved DNA/RNA aptamers:

    2. Shamah S. M.; Healy J. M.; Cload S. T. Acc. Chem. Res. 2008, 41, 130. - PubMed
    3. Gopinath S. H. B. Anal. Bioanal. Chem. 2007, 387, 171. - PubMed
    1. In vitro selections of DNA-linked small molecules:

    2. Wrenn S. J.; Weisinger R. M.; Halpin D. R.; Harbury P. B. J. Am. Chem. Soc. 2007, 129, 13137. - PMC - PubMed
    3. Melkko S.; Zhang Y.; Dumelin C. E.; Scheuermann J.; Neri D. Angew. Chem., Int. Ed. 2007, 46, 4671. - PubMed
    4. . Mock selections:

    5. Doyon J. B.; Snyder T. M.; Liu D. R. J. Am. Chem. Soc. 2003, 125, 12372. - PubMed
    6. Gartner Z. J.; Tse B. N.; Grubina R.; Doyon J. B.; Snyder T. M.; Liu D. R. Science 2004, 305, 1601. - PMC - PubMed
    1. Silverman S. Chem. Commun. 2008, 3467. - PubMed
    2. Joyce G. F. Annu. Rev. Biochem. 2004, 73, 791. - PubMed
    1. Kanan M. W.; Rozenman M. M.; Sakurai K.; Snyder T. M.; Liu D. R. Nature 2004, 431, 545. - PMC - PubMed
    2. Rozenman M. M.; Liu D. R. ChemBioChem 2006, 7, 253. - PubMed
    3. Rozenman M. M.; Kanan M. W.; Liu D. R. J. Am. Chem. Soc. 2007, 129, 14933. - PMC - PubMed

Publication types