Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 Jul;154(1):1-6.
doi: 10.1016/j.trsl.2009.03.007. Epub 2009 Apr 22.

Relaxin and its role in the development and treatment of fibrosis

Affiliations
Review

Relaxin and its role in the development and treatment of fibrosis

Robert G Bennett. Transl Res. 2009 Jul.

Abstract

Relaxin, which is a peptide hormone of the insulin superfamily, is involved in the promotion of extracellular matrix remodeling. This property is responsible for many well-known reproductive functions of relaxin. Recent important findings, including the identification of the relaxin receptor and the development of the relaxin-null mouse, have identified new targets and mechanisms for relaxin's actions, which resulted in unprecedented advances in the field. Relaxin has emerged as a natural suppressor of age-related fibrosis in many tissues, which include the skin, lung, kidney, and heart. Furthermore, relaxin has shown efficacy in the prevention and treatment of a variety of models of experimentally induced fibrosis. The intention of this review is to present a summary of recent advances in relaxin research, with a focus on areas of potential translational research on fibrosis in nonreproductive organs.

PubMed Disclaimer

References

    1. Sherwood OD. Relaxin’s Physiological Roles and Other Diverse Actions. Endocr Rev. 2004;25:205–34. - PubMed
    1. Adham IM, Burkhardt E, Benahmed M, Engel W. Cloning of a cDNA for a novel insulin-like peptide of the testicular Leydig cells. J Biol Chem. 1993;268:26668–72. - PubMed
    1. Bullesbach EE, Schwabe C. A novel Leydig cell cDNA-derived protein is a relaxin-like factor. J Biol Chem. 1995;270:16011–5. - PubMed
    1. Bathgate RA, Samuel CS, Burazin TC, Layfield S, Claasz AA, Reytomas IG, et al. Human relaxin gene 3 (H3) and the equivalent mouse relaxin (M3) gene. Novel members of the relaxin peptide family. J Biol Chem. 2002;277:1148–57. - PubMed
    1. Hsu SY, Nakabayashi K, Nishi S, Kumagai J, Kudo M, Sherwood OD, et al. Activation of orphan receptors by the hormone relaxin. Science. 2002;295:671–4. - PubMed

Publication types

MeSH terms