Human cytomegalovirus suppresses type I interferon secretion by plasmacytoid dendritic cells through its interleukin 10 homolog
- PMID: 19524994
- PMCID: PMC2747589
- DOI: 10.1016/j.virol.2009.05.013
Human cytomegalovirus suppresses type I interferon secretion by plasmacytoid dendritic cells through its interleukin 10 homolog
Abstract
Type I interferons (IFNs) are innate cytokines with potent antiviral and immunoregulatory activities. It remains unclear how human cytomegalovirus (HCMV) can establish persistence in the face of these strongly antagonistic cytokines. In this study, we confirm that IFN-alpha efficiently suppresses the penetration of HCMV into susceptible cells, including monocytes, the major cell population in peripheral blood that is highly susceptible to HCMV infection. We further demonstrate that the HCMV-derived interleukin 10 (IL-10) homolog functions similar to cellular IL-10 and broadly inhibits TLR-induced transcriptional activation of IFN-alpha/beta genes in plasmacytoid dendritic cells (PDCs), a major type I IFN-producer in vivo that is highly resistant to HCMV infection in vitro. These results suggest that HCMV subverts innate immunity by suppressing type I IFN production of PDCs during primary viral infection via its IL-10 homolog.
Figures
References
-
- Aichele P, Unsoeld H, Koschella M, Schweier O, Kalinke U, Vucikuja S. CD8 T cells specific for lymphocytic choriomeningitis virus require type I IFN receptor for clonal expansion. J. Immunol. 2006;176:4525–4529. - PubMed
-
- Beck K, Meyer-Konig U, Weidmann M, Nern C, Hufert FT. Human cytomegalovirus impairs dendritic cell function: a novel mechanism of human cytomegalovirus immune escape. Eur. J. Immunol. 2003;33:1528–1538. - PubMed
-
- Cederarv M, Soderberg-Naucler C, Odeberg J. HCMV infection of PDCs deviates the NK cell response into cytokine-producing cells unable to perform cytotoxicity. Immunobiology. 2009 In press. - PubMed
-
- Cella M, Jarrossay D, Facchetti F, Alebardi O, Nakajima H, Lanzavecchia A, Colonna M. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat. Med. 1999;5:919–923. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
