Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 Jul;9(7):849-66.
doi: 10.1517/14712590903029164.

Gene therapy for muscular dystrophy: current progress and future prospects

Affiliations
Review

Gene therapy for muscular dystrophy: current progress and future prospects

Capucine Trollet et al. Expert Opin Biol Ther. 2009 Jul.

Abstract

Muscular dystrophies refer to a group of inherited disorders characterized by progressive muscle weakness, wasting and degeneration. So far, there is no effective treatment but new gene-based therapies are currently being developed with particular noted advances in using conventional gene replacement strategies, RNA-based approaches, or cell-based gene therapy with a main focus on Duchenne muscular dystrophy (DMD). DMD is the most common and severe form of muscular dystrophy and current treatments are far from adequate. However, genetic and cell-based therapies, in particular exon skipping induced by antisense strategies, and corrective gene therapy via functionally engineered dystrophin genes hold great promise, with several clinical trials ongoing. Proof-of-concept of exon skipping has been obtained in animal models, and most recently in clinical trials; this approach represents a promising therapy for a subset of patients. In addition, gene-delivery-based strategies exist both for antisense-induced reading frame restoration, and for highly efficient delivery of functional dystrophin mini- and micro-genes to muscle fibres in vivo and muscle stem cells ex-vivo. In particular, AAV-based vectors show efficient systemic gene delivery to skeletal muscle directly in vivo, and lentivirus-based vectors show promise of combining ex vivo gene modification strategies with cell-mediated therapies.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources