Mutation of the membrane-associated M1 protease APM1 results in distinct embryonic and seedling developmental defects in Arabidopsis
- PMID: 19531600
- PMCID: PMC2714933
- DOI: 10.1105/tpc.108.059634
Mutation of the membrane-associated M1 protease APM1 results in distinct embryonic and seedling developmental defects in Arabidopsis
Erratum in
-
Corrigendum to: Mutation of the membrane-associated M1 protease APM1 results in distinct embryonic and seedling developmental defects in Arabidopsis.Plant Cell. 2021 Aug 13;33(7):2506. doi: 10.1093/plcell/koab096. Plant Cell. 2021. PMID: 33783514 Free PMC article. No abstract available.
Abstract
Aminopeptidase M1 (APM1), a single copy gene in Arabidopsis thaliana, encodes a metallopeptidase originally identified via its affinity for, and hydrolysis of, the auxin transport inhibitor 1-naphthylphthalamic acid (NPA). Mutations in this gene result in haploinsufficiency. Loss-of-function mutants show irregular, uncoordinated cell divisions throughout embryogenesis, affecting the shape and number of cotyledons and the hypophysis, and is seedling lethal at 5 d after germination due to root growth arrest. Quiescent center and cell cycle markers show no signals in apm1-1 knockdown mutants, and the ground tissue specifiers SHORTROOT and SCARECROW are misexpressed or mislocalized. apm1 mutants have multiple, fused cotyledons and hypocotyls with enlarged epidermal cells with cell adhesion defects. apm1 alleles show defects in gravitropism and auxin transport. Gravistimulation decreases APM1 expression in auxin-accumulating root epidermal cells, and auxin treatment increases expression in the stele. On sucrose gradients, APM1 occurs in unique light membrane fractions. APM1 localizes at the margins of Golgi cisternae, plasma membrane, select multivesicular bodies, tonoplast, dense intravacuolar bodies, and maturing metaxylem cells. APM1 associates with brefeldin A-sensitive endomembrane structures and the plasma membrane in cortical and epidermal cells. The auxin-related phenotypes and mislocalization of auxin efflux proteins in apm1 are consistent with biochemical interactions between APM1 and NPA.
Figures













References
-
- Abas, L., Benjamins, R., Malenica, N., Paciorek, T., Wisniewska, J., Moulinier-Anzola, J.C., Sieberer, T., Friml, J., and Luschnig, C. (2006). Intracellular trafficking and proteolysis of the Arabidopsis auxin-efflux facilitator PIN2 are involved in root gravitropism. Nat. Cell Biol. 8 249–256. - PubMed
-
- Aida, M., Beis, D., Heidstra, R., Willemsen, V., Blilou, I., Galinha, C., Nussaume, L., Noh, Y.S., Amasino, R., and Scheres, B. (2004). The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119 109–120. - PubMed
-
- Albiston, A.L., Ye, S., and Chai, S.Y. (2004). Membrane bound members of the M1 family: More than aminopeptidases. Protein Pept. Lett. 11 491–500. - PubMed
-
- Alonso, J.M., et al. (2003). Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301 653–657. - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous