Transcripts of unknown function in multiple-signaling pathways involved in human stem cell differentiation
- PMID: 19531736
- PMCID: PMC2731886
- DOI: 10.1093/nar/gkp426
Transcripts of unknown function in multiple-signaling pathways involved in human stem cell differentiation
Abstract
Mammalian transcriptome analysis has uncovered tens of thousands of novel transcripts of unknown function (TUFs). Classical and recent examples suggest that the majority of TUFs may underlie vital intracellular functions as non-coding RNAs because of their low coding potentials. However, only a portion of TUFs have been studied to date, and the functional significance of TUFs remains mostly uncharacterized. To increase the repertoire of functional TUFs, we screened for TUFs whose expression is controlled during differentiation of pluripotent human mesenchymal stem cells (hMSCs). The resulting six TUFs, named transcripts related to hMSC differentiation (TMDs), displayed distinct transcriptional kinetics during hMSC adipogenesis and/or osteogenesis. Structural and comparative genomic characterization suggested a wide variety of biologically active structures of these TMDs, including a long nuclear non-coding RNA, a microRNA host gene and a novel small protein gene. Moreover, the transcriptional response to established pathway activators indicated that most of these TMDs were transcriptionally regulated by each of the two key pathways for hMSC differentiation: the Wnt and protein kinase A (PKA) signaling pathways. The present study suggests that not only TMDs but also other human TUFs may in general participate in vital cellular functions with different molecular mechanisms.
Figures






Similar articles
-
Roles of MicroRNAs in Osteogenesis or Adipogenesis Differentiation of Bone Marrow Stromal Progenitor Cells.Int J Mol Sci. 2021 Jul 5;22(13):7210. doi: 10.3390/ijms22137210. Int J Mol Sci. 2021. PMID: 34281266 Free PMC article. Review.
-
MicroRNAs miR-96, miR-124, and miR-199a regulate gene expression in human bone marrow-derived mesenchymal stem cells.J Cell Biochem. 2012 Aug;113(8):2687-95. doi: 10.1002/jcb.24144. J Cell Biochem. 2012. PMID: 22441842
-
MicroRNA-218 competes with differentiation media in the induction of osteogenic differentiation of mesenchymal stem cell by regulating β-catenin inhibitors.Mol Biol Rep. 2020 Nov;47(11):8451-8463. doi: 10.1007/s11033-020-05885-7. Epub 2020 Oct 13. Mol Biol Rep. 2020. PMID: 33051753
-
Genes that integrate multiple adipogenic signaling pathways in human mesenchymal stem cells.Biochem Biophys Res Commun. 2011 Jun 17;409(4):786-91. doi: 10.1016/j.bbrc.2011.05.089. Epub 2011 May 20. Biochem Biophys Res Commun. 2011. PMID: 21621515
-
PPARγ and Wnt Signaling in Adipogenic and Osteogenic Differentiation of Mesenchymal Stem Cells.Curr Stem Cell Res Ther. 2016;11(3):216-25. doi: 10.2174/1574888x10666150519093429. Curr Stem Cell Res Ther. 2016. PMID: 25986621 Review.
Cited by
-
Potential functions of long non‑coding RNAs in the osteogenic differentiation of human bone marrow mesenchymal stem cells.Mol Med Rep. 2019 Jan;19(1):103-114. doi: 10.3892/mmr.2018.9674. Epub 2018 Nov 20. Mol Med Rep. 2019. PMID: 30483739 Free PMC article.
-
Assessment of ApoC1, LuzP6, C12orf75 and OCC-1 in cystic glioblastoma using MALDI-TOF mass spectrometry, immunohistochemistry and qRT-PCR.Med Mol Morphol. 2019 Dec;52(4):217-225. doi: 10.1007/s00795-019-00223-8. Epub 2019 Apr 20. Med Mol Morphol. 2019. PMID: 31006040 Free PMC article.
-
[Effect of miR-705 on osteogenic differentiation of mouse embryo osteoblast precursor cells MC3T3-E1].Zhejiang Da Xue Xue Bao Yi Xue Ban. 2016 May 25;45(6):575-580. doi: 10.3785/j.issn.1008-9292.2016.11.03. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2016. PMID: 28247599 Free PMC article. Chinese.
-
RNA Genes: Retroelements and Virally Retroposable microRNAs in Human Embryonic Stem Cells.Open Virol J. 2010 May 25;4:63-75. doi: 10.2174/1874357901004010063. Open Virol J. 2010. PMID: 20835360 Free PMC article.
-
ENCODE tiling array analysis identifies differentially expressed annotated and novel 5' capped RNAs in hepatitis C infected liver.PLoS One. 2011 Feb 16;6(2):e14697. doi: 10.1371/journal.pone.0014697. PLoS One. 2011. PMID: 21359205 Free PMC article.
References
-
- Carninci P., Kasukawa T., Katayama S., Gough J., Frith M.C., Maeda N., Oyama R., Ravasi T., Lenhard B., Wells C., et al. The transcriptional landscape of the mammalian genome. Science. 2005;309:1559–1563. - PubMed
-
- Cheng J., Kapranov P., Drenkow J., Dike S., Brubaker S., Patel S., Long J., Stern D., Tammana H., Helt G., et al. Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science. 2005;308:1149–1154. - PubMed
-
- Bertone P., Stolc V., Royce T.E., Rozowsky J.S., Urban A.E., Zhu X., Rinn J.L., Tongprasit W., Samanta M., Weissman S., et al. Global identification of human transcribed sequences with genome tiling arrays. Science. 2004;306:2242–2246. - PubMed
-
- Kapranov P., Willingham A.T., Gingeras T.R. Genome-wide transcription and the implications for genomic organization. Nat. Rev. Genet. 2007;8:413–423. - PubMed
-
- Willingham A.T., Gingeras T.R. TUF love for ‘junk’ DNA. Cell. 2006;125:1215–1220. - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
LinkOut - more resources
Full Text Sources
Molecular Biology Databases