Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 Sep;25(5):441-6.
doi: 10.1097/MOG.0b013e32832e9c41.

Neural and hormonal regulation of pancreatic secretion

Affiliations
Review

Neural and hormonal regulation of pancreatic secretion

Rashmi Chandra et al. Curr Opin Gastroenterol. 2009 Sep.

Abstract

Purpose of review: The biology of the pancreas is exquisitely complex and involves both endocrine and exocrine functions that are regulated by an integrated array of neural and hormonal processes. This review discusses recent developments in the regulation of both endocrine and exocrine secretion from the pancreas.

Recent findings: New data suggest that cholecystokinin can stimulate neurons located in the dorsal motor nucleus of the vagus. Addressing a controversial topic, recent evidence suggests a direct secretory action of cholecystokinin on human acinar cells. An emerging concept is that some hormones and peptides such as melatonin, ghrelin, obestatin and leptin perform dual functions in the pancreas by regulating secretion and maintaining metabolic homeostasis. The regulation of pancreatic secretion by several appetite-controlling neuropeptides such as ghrelin, orexin A and neuropeptide Y is also discussed. Recent data highlight findings that mechanisms of hormone action may be different between species possibly due to a divergence in signaling pathways during evolution.

Summary: The regulation of the secretory function of the pancreas by numerous hormones suggests that there are multiple and perhaps redundant signals governing the control of this important organ. Understanding these diverse pathways is essential to the treatment of pancreatitis, diabetes and obesity.

PubMed Disclaimer

References

    1. Liddle RA. Cholecystokinin. In: Walsh JH, Dockray GJ, editors. Gut peptides: biochemistry and physiology. New York: Raven Press; 1994. pp. 175–216.
    1. Liddle RA. Integrated actions of cholecystokinin on the gastrointestinal tract: use of the cholecystokinin bioassay. Gastroenterol Clin North Am. 1989;18(4):735–56. - PubMed
    1. Singer MV, Niebergall-Roth E. Secretion from acinar cells of the exocrine pancreas: role of enteropancreatic reflexes and cholecystokinin. Cell Biol Int. 2009;33(1):1–9. - PubMed
    1. Viard E, Zheng Z, Wan S, et al. Vagally mediated, nonparacrine effects of cholecystokinin-8s on rat pancreatic exocrine secretion. Am J Physiol Gastrointest Liver Physiol. 2007;293(2):G493–500. - PubMed
    1. Wan S, Coleman FH, Travagli RA. Cholecystokinin-8s excites identified rat pancreatic-projecting vagal motoneurons. Am J Physiol Gastrointest Liver Physiol. 2007;293(2):G484–492. - PubMed

Publication types

MeSH terms