Advances in understanding visual cortex plasticity
- PMID: 19540104
- PMCID: PMC2730427
- DOI: 10.1016/j.conb.2009.05.010
Advances in understanding visual cortex plasticity
Abstract
Visual cortical plasticity can be either rapid, occurring in response to abrupt changes in neural activity, or slow, occurring over days as a homeostatic process for adapting neuronal responsiveness. Recent advances have shown that the magnitude and polarity of rapid synaptic modifications are regulated by neuromodulators, while homeostatic modifications can occur through regulation of cytokine actions or N-methyl-d-aspartate (NMDA) receptor subunit composition. Synaptic and homeostatic plasticity together produce the normal physiological response to monocular impairments. In vivo studies have now overturned the dogma that robust plasticity is limited to an early critical period. Indeed, rapid physiological plasticity in the adult can be enabled by prior, experience-driven anatomical rearrangements or through pharmacological manipulations of the epigenome.
Conflict of interest statement
None.
Figures


Similar articles
-
Progress in understanding NMDA-receptor-dependent synaptic plasticity in the visual cortex.J Physiol Paris. 1996;90(3-4):223-7. doi: 10.1016/s0928-4257(97)81428-3. J Physiol Paris. 1996. PMID: 9116672 Review.
-
Disruption of NMDAR Function Prevents Normal Experience-Dependent Homeostatic Synaptic Plasticity in Mouse Primary Visual Cortex.J Neurosci. 2019 Sep 25;39(39):7664-7673. doi: 10.1523/JNEUROSCI.2117-18.2019. Epub 2019 Aug 14. J Neurosci. 2019. PMID: 31413075 Free PMC article.
-
Retinoic Acid Receptor RARα-Dependent Synaptic Signaling Mediates Homeostatic Synaptic Plasticity at the Inhibitory Synapses of Mouse Visual Cortex.J Neurosci. 2018 Dec 5;38(49):10454-10466. doi: 10.1523/JNEUROSCI.1133-18.2018. Epub 2018 Oct 24. J Neurosci. 2018. PMID: 30355624 Free PMC article.
-
Enhanced NR2A subunit expression and decreased NMDA receptor decay time at the onset of ocular dominance plasticity in the ferret.J Neurophysiol. 1999 May;81(5):2587-91. doi: 10.1152/jn.1999.81.5.2587. J Neurophysiol. 1999. PMID: 10322092
-
[Critical period of cortical plasticity].Rev Neurol. 2003 Oct 16-31;37(8):739-43. Rev Neurol. 2003. PMID: 14593633 Review. Spanish.
Cited by
-
Neurochemical changes within human early blind occipital cortex.Neuroscience. 2013 Nov 12;252:222-33. doi: 10.1016/j.neuroscience.2013.08.004. Epub 2013 Aug 14. Neuroscience. 2013. PMID: 23954804 Free PMC article.
-
Neurochemical changes in the pericalcarine cortex in congenital blindness attributable to bilateral anophthalmia.J Neurophysiol. 2015 Sep;114(3):1725-33. doi: 10.1152/jn.00567.2015. Epub 2015 Jul 15. J Neurophysiol. 2015. PMID: 26180125 Free PMC article.
-
Abnormal sensory perception masks behavioral performance of Grin1 knockdown mice.Genes Brain Behav. 2022 Jul;21(6):e12825. doi: 10.1111/gbb.12825. Epub 2022 Jun 15. Genes Brain Behav. 2022. PMID: 35705513 Free PMC article.
-
Metabolic alterations within the primary visual cortex in blind patients with end-stage glaucoma: a proton magnetic resonance spectroscopy study.Front Cell Dev Biol. 2025 Jun 27;13:1590460. doi: 10.3389/fcell.2025.1590460. eCollection 2025. Front Cell Dev Biol. 2025. PMID: 40655950 Free PMC article.
-
The Neurodynamics of Cognition: A Tutorial on Computational Cognitive Neuroscience.J Math Psychol. 2011 Aug 1;55(4):273-289. doi: 10.1016/j.jmp.2011.04.003. J Math Psychol. 2011. PMID: 21841845 Free PMC article.
References
-
- Frenkel MY, Bear MF. How monocular deprivation shifts ocular dominance in visual cortex of young mice. Neuron. 2004;44:917–923. - PubMed
-
- Heynen AJ, Yoon BJ, Liu CH, Chung HJ, Huganir RL, Bear MF. Molecular mechanism for loss of visual cortical responsiveness following brief monocular deprivation. Nat Neurosci. 2003;6:854–862. - PubMed
-
-
Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson SB. Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature. 1998;391:892–896. The first demonstration of synaptic scaling in visual cortical neurons. This study demonstrated that mEPSC amplitude increases following action potential blockade with TTX, suggesting that synaptic strengths increase to compensate for reduced neural activity. Conversely, synaptic strengths decrease following prolonged periods of hyperactivity induced by treatment with the GABAergic antagonist bicuculline.
-
-
- Bear MF, Singer W. Modulation of visual cortical plasticity by acetylcholine and noradrenaline. Nature. 1986;320:172–176. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources