Proteomic and genomic characterization of highly infectious Clostridium difficile 630 spores
- PMID: 19542279
- PMCID: PMC2725610
- DOI: 10.1128/JB.00597-09
Proteomic and genomic characterization of highly infectious Clostridium difficile 630 spores
Abstract
Clostridium difficile, a major cause of antibiotic-associated diarrhea, produces highly resistant spores that contaminate hospital environments and facilitate efficient disease transmission. We purified C. difficile spores using a novel method and show that they exhibit significant resistance to harsh physical or chemical treatments and are also highly infectious, with <7 environmental spores per cm(2) reproducibly establishing a persistent infection in exposed mice. Mass spectrometric analysis identified approximately 336 spore-associated polypeptides, with a significant proportion linked to translation, sporulation/germination, and protein stabilization/degradation. In addition, proteins from several distinct metabolic pathways associated with energy production were identified. Comparison of the C. difficile spore proteome to those of other clostridial species defined 88 proteins as the clostridial spore "core" and 29 proteins as C. difficile spore specific, including proteins that could contribute to spore-host interactions. Thus, our results provide the first molecular definition of C. difficile spores, opening up new opportunities for the development of diagnostic and therapeutic approaches.
Figures







Similar articles
-
Clostridium difficile spore biology: sporulation, germination, and spore structural proteins.Trends Microbiol. 2014 Jul;22(7):406-16. doi: 10.1016/j.tim.2014.04.003. Epub 2014 May 7. Trends Microbiol. 2014. PMID: 24814671 Free PMC article. Review.
-
N-Deacetylases required for muramic-δ-lactam production are involved in Clostridium difficile sporulation, germination, and heat resistance.J Biol Chem. 2018 Nov 23;293(47):18040-18054. doi: 10.1074/jbc.RA118.004273. Epub 2018 Sep 28. J Biol Chem. 2018. PMID: 30266804 Free PMC article.
-
Identification of a Novel Regulator of Clostridioides difficile Cortex Formation.mSphere. 2021 Jun 30;6(3):e0021121. doi: 10.1128/mSphere.00211-21. Epub 2021 May 28. mSphere. 2021. PMID: 34047655 Free PMC article.
-
SleC is essential for germination of Clostridium difficile spores in nutrient-rich medium supplemented with the bile salt taurocholate.J Bacteriol. 2010 Feb;192(3):657-64. doi: 10.1128/JB.01209-09. Epub 2009 Nov 20. J Bacteriol. 2010. PMID: 19933358 Free PMC article.
-
Genetic mechanisms governing sporulation initiation in Clostridioides difficile.Curr Opin Microbiol. 2022 Apr;66:32-38. doi: 10.1016/j.mib.2021.12.001. Epub 2021 Dec 18. Curr Opin Microbiol. 2022. PMID: 34933206 Free PMC article. Review.
Cited by
-
The multiplicity of thioredoxin systems meets the specific lifestyles of Clostridia.PLoS Pathog. 2024 Feb 8;20(2):e1012001. doi: 10.1371/journal.ppat.1012001. eCollection 2024 Feb. PLoS Pathog. 2024. PMID: 38330058 Free PMC article.
-
Regulation of Clostridium difficile spore germination by the CspA pseudoprotease domain.Biochimie. 2016 Mar;122:243-54. doi: 10.1016/j.biochi.2015.07.023. Epub 2015 Jul 29. Biochimie. 2016. PMID: 26231446 Free PMC article.
-
Isolating and Purifying Clostridium difficile Spores.Methods Mol Biol. 2016;1476:117-28. doi: 10.1007/978-1-4939-6361-4_9. Methods Mol Biol. 2016. PMID: 27507337 Free PMC article.
-
Development of a Dual-Fluorescent-Reporter System in Clostridioides difficile Reveals a Division of Labor between Virulence and Transmission Gene Expression.mSphere. 2022 Jun 29;7(3):e0013222. doi: 10.1128/msphere.00132-22. Epub 2022 May 31. mSphere. 2022. PMID: 35638354 Free PMC article.
-
Revisiting the Role of Csp Family Proteins in Regulating Clostridium difficile Spore Germination.J Bacteriol. 2017 Oct 17;199(22):e00266-17. doi: 10.1128/JB.00266-17. Print 2017 Nov 15. J Bacteriol. 2017. PMID: 28874406 Free PMC article.
References
-
- Allen, J. E., M. C. Cerrone, P. R. Beatty, and R. S. Stephens. 1990. Cysteine-rich outer membrane proteins of Chlamydia trachomatis display compensatory sequence changes between biovariants. Mol. Microbiol. 41543-1550. - PubMed
-
- Bartlett, J. G. 2006. The new epidemic of Clostridium difficile-associated enteric disease. Ann. Intern. Med. 145758-764. - PubMed
-
- Bartlett, J. G., T. Chang, N. S. Taylor, and A. B. Onderdonk. 1979. Colitis induced by Clostridium difficile. Rev. Infect. Dis. 1370-378. - PubMed
-
- Borriello, S. P. 1998. Pathogenesis of Clostridium difficile infection. J. Antimicrob. Chemother. 41(Suppl. C)13-19. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases