igr Genes and Mycobacterium tuberculosis cholesterol metabolism
- PMID: 19542286
- PMCID: PMC2725594
- DOI: 10.1128/JB.00452-09
igr Genes and Mycobacterium tuberculosis cholesterol metabolism
Abstract
Recently, cholesterol was identified as a physiologically important nutrient for Mycobacterium tuberculosis survival in chronically infected mice. However, it remained unclear precisely when cholesterol is available to the bacterium and what additional bacterial functions are required for its metabolism. Here, we show that the igr locus, which we previously found to be essential for intracellular growth and virulence of M. tuberculosis, is required for cholesterol metabolism. While igr-deficient strains grow identically to the wild type in the presence of short- and long-chain fatty acids, the growth of these bacteria is completely inhibited in the presence of cholesterol. Interestingly, this mutant is still able to respire under cholesterol-dependent growth inhibition, suggesting that the bacteria can metabolize other carbon sources during cholesterol toxicity. Consistent with this hypothesis, we found that the growth-inhibitory effect of cholesterol in vitro depends on cholesterol import, as mutation of the mce4 sterol uptake system partially suppresses this effect. In addition, the Delta igr mutant growth defect during the early phase of disease is completely suppressed by mutating mce4, implicating cholesterol intoxication as the primary mechanism of attenuation. We conclude that M. tuberculosis metabolizes cholesterol throughout infection.
Figures
Similar articles
-
Role of cholesterol in Mycobacterium tuberculosis infection.Indian J Exp Biol. 2009 Jun;47(6):407-11. Indian J Exp Biol. 2009. PMID: 19634704 Review.
-
An insight into the regulation of mce4 operon of Mycobacterium tuberculosis.Tuberculosis (Edinb). 2013 Jul;93(4):389-97. doi: 10.1016/j.tube.2013.03.007. Epub 2013 Apr 24. Tuberculosis (Edinb). 2013. PMID: 23622789
-
Pathway profiling in Mycobacterium tuberculosis: elucidation of cholesterol-derived catabolite and enzymes that catalyze its metabolism.J Biol Chem. 2011 Dec 23;286(51):43668-43678. doi: 10.1074/jbc.M111.313643. Epub 2011 Nov 1. J Biol Chem. 2011. PMID: 22045806 Free PMC article.
-
Rv3723/LucA coordinates fatty acid and cholesterol uptake in Mycobacterium tuberculosis.Elife. 2017 Jun 27;6:e26969. doi: 10.7554/eLife.26969. Elife. 2017. PMID: 28708968 Free PMC article.
-
Cholesterol metabolism: a potential therapeutic target in Mycobacteria.Br J Pharmacol. 2017 Jul;174(14):2194-2208. doi: 10.1111/bph.13694. Epub 2017 Jan 24. Br J Pharmacol. 2017. PMID: 28002883 Free PMC article. Review.
Cited by
-
Cholesterol oxidase is indispensable in the pathogenesis of Mycobacterium tuberculosis.PLoS One. 2013 Sep 9;8(9):e73333. doi: 10.1371/journal.pone.0073333. eCollection 2013. PLoS One. 2013. PMID: 24039915 Free PMC article.
-
Slow growth of Mycobacterium tuberculosis at acidic pH is regulated by phoPR and host-associated carbon sources.Mol Microbiol. 2014 Oct;94(1):56-69. doi: 10.1111/mmi.12688. Epub 2014 Jul 13. Mol Microbiol. 2014. PMID: 24975990 Free PMC article.
-
FadA5 a thiolase from Mycobacterium tuberculosis: a steroid-binding pocket reveals the potential for drug development against tuberculosis.Structure. 2015 Jan 6;23(1):21-33. doi: 10.1016/j.str.2014.10.010. Epub 2014 Dec 4. Structure. 2015. PMID: 25482540 Free PMC article.
-
Mycobacterial gene cuvA is required for optimal nutrient utilization and virulence.Infect Immun. 2014 Oct;82(10):4104-17. doi: 10.1128/IAI.02207-14. Epub 2014 Jul 21. Infect Immun. 2014. PMID: 25047842 Free PMC article.
-
Functional genetic diversity among Mycobacterium tuberculosis complex clinical isolates: delineation of conserved core and lineage-specific transcriptomes during intracellular survival.PLoS Pathog. 2010 Jul 8;6(7):e1000988. doi: 10.1371/journal.ppat.1000988. PLoS Pathog. 2010. PMID: 20628579 Free PMC article.
References
-
- Brzostek, A., B. Dziadek, A. Rumijowska-Galewicz, J. Pawelczyk, and J. Dziadek. 2007. Cholesterol oxidase is required for virulence of Mycobacterium tuberculosis. FEMS Microbiol. Lett. 275:106-112. - PubMed
-
- Chang, J. C., N. S. Harik, R. P. Liao, and D. R. Sherman. 2007. Identification of mycobacterial genes that alter growth and pathology in macrophages and in mice. J. Infect. Dis. 196:788-795. - PubMed
-
- Cole, S. T., R. Brosch, J. Parkhill, T. Garnier, C. Churcher, D. Harris, S. V. Gordon, K. Eiglmeier, S. Gas, C. E. Barry III, F. Tekaia, K. Badcock, D. Basham, D. Brown, T. Chillingworth, R. Connor, R. Davies, K. Devlin, T. Feltwell, S. Gentles, N. Hamlin, S. Holroyd, T. Hornsby, K. Jagels, A. Krogh, J. McLean, S. Moule, L. Murphy, K. Oliver, J. Osborne, M. A. Quail, M. A. Rajandream, J. Rogers, S. Rutter, K. Seeger, J. Skelton, R. Squares, S. Squares, J. E. Sulston, K. Taylor, S. Whitheead, and B. G. Barrell. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537-544. - PubMed
-
- Gatfield, J., and J. Pieters. 2000. Essential role for cholesterol in entry of mycobacteria into macrophages. Science 288:1647-1650. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
