Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jun;5(6):e1000418.
doi: 10.1371/journal.pcbi.1000418. Epub 2009 Jun 19.

Taking the lag out of jet lag through model-based schedule design

Affiliations

Taking the lag out of jet lag through model-based schedule design

Dennis A Dean 2nd et al. PLoS Comput Biol. 2009 Jun.

Abstract

Travel across multiple time zones results in desynchronization of environmental time cues and the sleep-wake schedule from their normal phase relationships with the endogenous circadian system. Circadian misalignment can result in poor neurobehavioral performance, decreased sleep efficiency, and inappropriately timed physiological signals including gastrointestinal activity and hormone release. Frequent and repeated transmeridian travel is associated with long-term cognitive deficits, and rodents experimentally exposed to repeated schedule shifts have increased death rates. One approach to reduce the short-term circadian, sleep-wake, and performance problems is to use mathematical models of the circadian pacemaker to design countermeasures that rapidly shift the circadian pacemaker to align with the new schedule. In this paper, the use of mathematical models to design sleep-wake and countermeasure schedules for improved performance is demonstrated. We present an approach to designing interventions that combines an algorithm for optimal placement of countermeasures with a novel mode of schedule representation. With these methods, rapid circadian resynchrony and the resulting improvement in neurobehavioral performance can be quickly achieved even after moderate to large shifts in the sleep-wake schedule. The key schedule design inputs are endogenous circadian period length, desired sleep-wake schedule, length of intervention, background light level, and countermeasure strength. The new schedule representation facilitates schedule design, simulation studies, and experiment design and significantly decreases the amount of time to design an appropriate intervention. The method presented in this paper has direct implications for designing jet lag, shift-work, and non-24-hour schedules, including scheduling for extreme environments, such as in space, undersea, or in polar regions.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Schema of the mathematical model and the simulated PRC to light.
Panel A. A schematic of the circadian and performance/alertness mathematical models ,. Both light intensity and endogenous period (“tau”) are inputs to the circadian model to make predictions of the phase and amplitude of the circadian pacemaker. The inputs to the neurobehavioral models are the sleep-wake times and the output of the circadian model. The outputs of the performance models include subjective alertness and objective performance measures. Panel B. Schematic of a phase response curve (PRC) to light stimuli. Circadian phase in hours (Φi) is displayed on the x-axis. Circadian Phase = 0 corresponds to the time of the minimum of the core body temperature, an accepted circadian phase marker. The y-axis displays the change in circadian phase (ΔΦ) ( =  phase after stimulus minus phase before stimulus (Φi)) following a light countermeasure centered at Φi. The PRC consists of two regions: a phase delay (negative phase shift) and a phase advance (positive phase shift) region. If a light stimulus occurs in the delay region, the subsequent circadian phase will occur at a later clock time; the opposite is true for the advance region.
Figure 2
Figure 2. Examples of ‘Schedule Building Blocks’.
Note that the constraint in the “Constrained Countermeasure” is assumed to be a timing-related constraint and is therefore instantiated in the countermeasure start time and countermeasure length parameters.
Figure 3
Figure 3. Phase response contours from simulations of phase response protocols.
The horizontal axis represents the timing of the countermeasure center (in hours), relative to the time of the predicted core body temperature minimum (Circadian Phase = 0). The vertical axis represents the specific parameter being studied: duration (Panel A), intensity (Panel B), endogenous circadian period (Panel C). The magnitude of the phase shift (in hours) is color coded according to the legend. The maximum delay and advance regions are colored dark blue and dark red, respectively. Panel A. Duration (1 to 12 hr) response contours for light pulses with different intensities (1,000–10,000 lux). Simulations were run with an endogenous period of 24.2 hr. Panel B. Intensity (1000–10,000 lux) response contours for different light pulse durations (1–12 hr). Simulations were run with an endogenous period of 24.2 hr. Panel C. Endogenous period (23.8–24.6 hr) response contours for different intensities (1,000–10,000 lux). Simulations were run with 3-hr light pulse durations.
Figure 4
Figure 4. Schedule and simulation results of a jet-lag schedule.
The schedule includes two baseline days, a 12-hour shift in scheduled sleep episode, followed by 12 days at the new schedule. Panels A1 and B1 are the simulations without a countermeasure; Panels A2 and B2 are the simulations with a countermeasure. Panels A1 and A2. Raster plots of the schedule and simulation results: time (midnight to midnight) is represented horizontally, and each line is a separate day. Black boxes represent the timing of sleep episodes, white boxes represent the timing of wake episodes, yellow rectangles represent the timing of the bright light countermeasure, blue rectangles represent times of >85% performance, and red vertical lines represent time of predicted core body temperature minimum (the marker of circadian phase). The target phase used in the objective function is shown by the light blue vertical line in the shifted sleep. Panels B1 and B2. The performance within each wake episode across all days of the schedule is shown without (B1) and with (B2) countermeasures; each color represents a different day of the protocol. As circadian phase moves closer to the target phase, there is a higher level of performance for a longer duration each day. The countermeasure speeds this phase shift and results in faster improvement in performance, especially after ∼6 hours of wake.
Figure 5
Figure 5. Simulated changes in daily performance with and without countermeasure after a jet-lag schedule.
The schedule is the same as in Figure 4. Panels A1 and B1 are the simulations without a countermeasure; Panels A2 and B2 are the simulations with a countermeasure. Panels A1–A2: The predicted performance upper quartile (green), median (red), and lower (blue) quartile for each wake episode across all days of the schedule. Panels B1–B2: The scaled upper and lower quartiles across wake episodes of the schedules. For panels B1–B2, the combined upper (green) and lower (blue) quartile of simulated performance during baseline (wake day episode 1) is scaled to 1.
Figure 6
Figure 6. The empirical cumulative probability distribution of performance.
The distribution is shown for baseline (dot-dashed), and across the entire protocol with (dashed) and without (solid) a countermeasure.

Similar articles

Cited by

References

    1. Arendt J, Stone B, Skene D. Jet Lag and Sleep Disruption. In: Kryger, Roth, Dement, editors. Principles and Practice of Sleep Medicine. Philadelphia: WB Saunders; 2000. pp. 591–599.
    1. Wright KP, Jr, Hull JT, Hughes RJ, Ronda JM, Czeisler CA. Sleep and wakefulness out of phase with internal biological time impairs learning in humans. J Cogn Neurosci. 2006;18:508–521. - PubMed
    1. Wright KP, Jr, Hull JT, Czeisler CA. Relationship between alertness, performance, and body temperature in humans. Am J Physiol Regul Integr Comp Physiol. 2002;283:R1370–R1377. - PubMed
    1. Czeisler CA, Allan JS. Acute circadian phase reversal in man via bright light exposure: application to jet-lag. Sleep Res. 1987;16:605.
    1. Czeisler CA, Johnson MP, Duffy JF, Brown EN, Ronda JM, et al. Exposure to bright light and darkness to treat physiologic maladaptation to night work. N Engl J Med. 1990;322:1253–1259. - PubMed

Publication types