Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Nov;58(4):879-91.
doi: 10.1007/s00248-009-9548-2. Epub 2009 Jun 20.

Bacterial community and nitrogen fixation in the red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Curculionidae: Scolytinae)

Affiliations

Bacterial community and nitrogen fixation in the red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Curculionidae: Scolytinae)

Jesús Morales-Jiménez et al. Microb Ecol. 2009 Nov.

Abstract

The red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Curculionidae: Scolytinae), colonizes all pines species within its native range throughout North and Central America. Recently, this species was accidentally introduced to China, where it has caused severe damage in pine forests. It belongs to a group of beetles that spend most of their lives between the tree bark and sapwood, where it feeds on phloem: a poor substrate with very low nutritional value of nitrogen and toxic properties due to its high content of secondary defensive compounds. The aim of this study was to characterize the bacterial community of the D. valens gut by culture-dependent and -independent methods. Polymerase chain reaction denaturing gradient gel electrophoresis and ribosomal gene library analyses revealed that species diversity in the D. valens gut was relatively low, containing between six and 17 bacterial species. The bacterial community associated with larvae and adults was dominated by members of the following genera: Lactococcus, Acinetobacter, Pantoea, Rahnella, Stenothrophomonas, Erwinia, Enterobacter, Serratia, Janibacter, Leifsonia, Cellulomonas, and Cellulosimicrobium. The members of the last four genera showed cellulolytic activity in vitro and could be involved in cellulose breakdown in the insect gut. Finally, nitrogen fixation was demonstrated in live larvae and adults; however, capacity of nitrogen fixing in vitro was not found among enterobacterial species isolated in nitrogen-free media; neither were nifD nor nifH genes detected. In contrast, nifD gen was detected in metagenomic DNA from insect guts. The identification of bacterial species and their potential physiological capacities will allow exploring the role of gut symbiotic bacteria in the adaptation and survival of D. valens in a harsh chemical habitat poor in nitrogen sources.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Nat Rev Microbiol. 2004 Aug;2(8):621-31 - PubMed
    1. Int J Syst Evol Microbiol. 2004 Mar;54(Pt 2):533-536 - PubMed
    1. Gene. 2007 Oct 15;401(1-2):131-4 - PubMed
    1. Arch Microbiol. 1984 Jun;138(2):131-9 - PubMed
    1. Environ Microbiol. 2006 Jan;8(1):11-20 - PubMed

Publication types

LinkOut - more resources