Quantitative prediction of body surface potentials from myocardial action potentials using a summed dipole model
- PMID: 19543975
- DOI: 10.1007/s10558-009-9075-2
Quantitative prediction of body surface potentials from myocardial action potentials using a summed dipole model
Abstract
This paper demonstrates quantitatively, using streamlined mathematics, how the transmembrane ionic currents in individual cardiac muscle cells act to produce the body surface potentials of the electrocardiogram (ECG). From fundamental principles of electrostatics, anatomy, and physiology, one can characterize the strength of apparent dipoles along a wavefront of depolarization in a local volume of myocardium. Net transmembrane flow of ionic current in actively depolarizing or repolarizing tissue induces extracellular current flow, which sets up a field of electrical potential that resembles that of a dipole. The local dipole strength depends upon the tissue cross section, the tissue resistivity, the resting membrane potential, the membrane capacitance, the volume fraction of intracellular fluid, the time rate of change of the action potential, and the cell radius. There are no unknown, "free" parameters. There are no arbitrary scale factors. Body surface potentials are a function of the summed local dipole strengths, directions, and distances from the measuring points. Calculations of body surface potentials can be made for the scenarios of depolarization (QRS complex), repolarization (T wave) and localized acute injury (ST segment shifts) and agree well with experimentally measured potentials. This simplified predictive dipole theory provides a solution to the forward problem of electrocardiography that explains from a physiological perspective how the collective depolarization and repolarization of individual cardiac muscle cells create body surface potentials in health and disease.
Similar articles
-
Examination of depth-weighted optical signals during cardiac optical mapping: a simulation study.Comput Biol Med. 2007 May;37(5):732-8. doi: 10.1016/j.compbiomed.2006.07.004. Epub 2006 Sep 20. Comput Biol Med. 2007. PMID: 16987506
-
Analytical model of extracellular potentials in a tissue slab with a finite bath.IEEE Trans Biomed Eng. 2005 Feb;52(2):334-8. doi: 10.1109/TBME.2004.840467. IEEE Trans Biomed Eng. 2005. PMID: 15709672
-
Some imaging parameters of the oblique dipole layer cardiac generator derivable from body surface electrical potentials.IEEE Trans Biomed Eng. 1992 Feb;39(2):159-64. doi: 10.1109/10.121647. IEEE Trans Biomed Eng. 1992. PMID: 1612619
-
Crosstalk between theoretical and experimental studies for the understanding of cardiac electrical impulse propagation.J Electrocardiol. 2007 Nov-Dec;40(6 Suppl):S136-41. doi: 10.1016/j.jelectrocard.2007.05.026. J Electrocardiol. 2007. PMID: 17993310 Review. No abstract available.
-
The inverse problem in electrocardiography: solutions in terms of epicardial potentials.Crit Rev Biomed Eng. 1988;16(3):215-68. Crit Rev Biomed Eng. 1988. PMID: 3064971 Review.
MeSH terms
LinkOut - more resources
Full Text Sources