Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 Jul;103(1):108-14.
doi: 10.1093/bja/aep150.

Current concepts in neuromuscular transmission

Affiliations
Free article
Review

Current concepts in neuromuscular transmission

M J Fagerlund et al. Br J Anaesth. 2009 Jul.
Free article

Abstract

The neuromuscular junction (NMJ) is structured and powered to transduce electrical activity from the distal nerve terminal of a motor neurone via the neuromuscular cleft to the post-junctional muscle membrane to ultimately generate muscle contraction. Our understanding of this complex function has expanded over many years, and the NMJ has served as a prototype for how different synapses operate in the peripheral and central nervous systems. The NMJ has a presynaptic part which is synonymous with the distal nerve ending, being responsible for neurotransmitter synthesis, packaging into vesicles, and subsequent vesicle transportation to active release sites where vesicle docking, fusion, and release of acetylcholine and other co-released transmitters finally take place. The synaptic cleft, filled with large molecular complexes that guarantee ultrastructural NMJ arrangement and signal transduction, allows for rapid diffusion and degradation of the neurotransmitter. The postsynaptic part consists of a folded muscle membrane into which nicotinic acetylcholine receptors (nAChRs) directly opposite the presynaptic active release sites are mounted and fixed by a cytoskeleton. This specialized postsynaptic region is closely associated with the perijunctional zone where a high density of sodium channels promote and amplify the signal in order to guarantee the propagation of the electrical activity to generate muscle contraction. The transduction process is maintained at load (i.e. high stimulus frequency) by a presynaptic mechanism allowing for sustained transmitter release over time at high demand. This positive feedback mechanism relies on neuronal nAChRs present on the distal nerve terminal, whereas the continuation of the transduction process at the postsynaptic part relies on the classical muscle type nAChR. In this review, we will focus on recent findings of potential clinical importance that will advance our understanding of the effects of neuromuscular blocking agents and neuromuscular monitoring and also our management of disorders of the neuromuscular system within anaesthesia and intensive care.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources