Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jun 16;7(6):e1000145.
doi: 10.1371/journal.pbio.1000145. Epub 2009 Jun 23.

Light, sleep, and circadian rhythms: together again

Affiliations

Light, sleep, and circadian rhythms: together again

Derk-Jan Dijk et al. PLoS Biol. .
No abstract available

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Summary of pervasive effects of light.
A diffuse network of photosensitive retinal ganglion cells (pRGCs), which also receive input from rods and cones, are maximally sensitive to blue light between 470 and 480 nm (A). These cells have direct connections to the central circadian oscillator in the SCN where depending on the time of day (circadian time, CT) light induces changes in gene expression (B). pRGCs also mediate the synchronisation to LD cycles of locomotor activity, and light-induced phase shifts (C). pRGC connections to the olivary pretectal nucleus mediate light-sensitive pupil constriction (D), and indirect input via the SCN regulates the light-sensitive suppression of melatonin production in the pineal (E). The pRGC network has direct connections to sleep regulatory structures such as the VLPO and thereby modulates sleep and the ECoG during wakefulness (F). Blue light can modify brain responses to an executive task, as measured using fMRI (G) (figure adapted from , with permission), and can improve alertness (H) during the morning, lunch time, and early evening (figure based on data published in [32]).

References

    1. Moore RY, Eichler VB. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res. 1972;42:201–206. - PubMed
    1. Pittendrigh CS, Daan S. A functional analysis of circadian pacemakers in nocturnal rodents. IV. Entrainment: Pacemaker as clock. J Comp Physiol [A] 1976;106:291–331.
    1. Pohl H. Characteristics and variability in entrainment of circadian rhythms to light in diurnal rodents. In: Aschoff J, Daan S, Groos GA, editors. Vertebrate circadian systems: Structure and physiology. Berlin: Springer-Verlag; 1982. pp. 339–346.
    1. Shigeyoshi Y, Taguchi K, Yamamoto S, Takekida S, Yan L, et al. Light-induced resetting of a mammalian circadian clock is associated with rapid induction of the mPer1 transcript. Cell. 1997;91:1043–1053. - PubMed
    1. Yan L, Silver R. Differential induction and localization of mPer1 and mPer2 during advancing and delaying phase shifts. Eur J Neurosci. 2002;16:1531–1540. - PMC - PubMed

Publication types