Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jul 14;11(26):5489-98.
doi: 10.1039/b822262b. Epub 2009 Apr 16.

Non-perturbative magnetic phenomena in closed-shell paramagnetic molecules

Affiliations

Non-perturbative magnetic phenomena in closed-shell paramagnetic molecules

Erik I Tellgren et al. Phys Chem Chem Phys. .

Abstract

By means of non-perturbative ab initio calculations, it is shown that paramagnetic closed-shell molecules are characterized by a strongly non-linear magnetic response, whose main feature consists of a paramagnetic-to-diamagnetic transition in a strong magnetic field. The physical origin of this phenomenon is rationalised on the basis of an analytical model based on molecular orbital theory. For the largest molecules considered here, the acepleiadylene dianion and the corannulene dianion, the transition field is of the order of 10(3) T, about one order of magnitude larger than the magnetic field strength currently achievable in experimental settings. However, our simple model suggests that the paramagnetic-to-diamagnetic transition is a universal property of paramagnetic closed-shell systems in strong magnetic fields, provided no singlet-triplet level crossing occurs for fields smaller than the critical transition field. Accordingly, fields weaker than 100 T should suffice to trigger the predicted transition for systems whose size is still well within the (medium-large) molecular domain, such as hypothetical antiaromatic rings with less than one hundred carbon atoms.

PubMed Disclaimer