Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Nov;115(4):995-1007.
doi: 10.1083/jcb.115.4.995.

Acquisition of membrane lipids by differentiating glyoxysomes: role of lipid bodies

Affiliations

Acquisition of membrane lipids by differentiating glyoxysomes: role of lipid bodies

K D Chapman et al. J Cell Biol. 1991 Nov.

Abstract

Glyoxysomes in cotyledons of cotton (Gossypium hirsutum, L.) seedlings enlarge dramatically within 48 h after seed imbibition (Kunce, C.M., R.N. Trelease, and D.C. Doman. 1984. Planta (Berl.). 161:156-164) to effect mobilization of stored cotton-seed oil. We discovered that the membranes of enlarging glyoxysomes at all stages examined contained a large percentage (36-62% by weight) of nonpolar lipid, nearly all of which were triacylglycerols (TAGs) and TAG metabolites. Free fatty acids comprised the largest percentage of these nonpolar lipids. Six uncommon (and as yet unidentified) fatty acids constituted the majority (51%) of both the free fatty acids and the fatty acids in TAGs of glyoxysome membranes; the same six uncommon fatty acids were less than 7% of the acyl constituents in TAGs extracted from cotton-seed storage lipid bodies. TAGs of lipid bodies primarily were composed of palmitic, oleic, and linoleic acids (together 70%). Together, these three major storage fatty acids were less than 10% of both the free fatty acids and fatty acids in TAGs of glyoxysome membranes. Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) constituted a major portion of glyoxysome membrane phospholipids (together 61% by weight). Pulse-chase radiolabeling experiments in vivo clearly demonstrated that 14C-PC and 14C-PE were synthesized from 14C-choline and 14C-ethanolamine, respectively, in ER of cotyledons, and then transported to mitochondria; however, these lipids were not transported to enlarging glyoxysomes. The lack of ER involvement in glyoxysome membrane phospholipid synthesis, and the similarities in lipid compositions between lipid bodies and membranes of glyoxysomes, led us to formulate and test a new hypothesis whereby lipid bodies serve as the dynamic source of nonpolar lipids and phospholipids for membrane expansion of enlarging glyoxysomes. In a cell-free system, 3H-triolein (TO) and 3H-PC were indeed transferred from lipid bodies to glyoxysomes. 3H-PC, but not 3H-TO, also was transferred to mitochondria in vitro. The amount of lipid transferred increased linearly with respect to time and amount of acceptor organelle protein, and transfer occurred only when lipid body membrane proteins were associated with the donor lipid bodies. 3H-TO was transferred to and incorporated into glyoxysome membranes, and then hydrolyzed to free fatty acids. 3H-PC was transferred to and incorporated into glyoxysome and mitochondria membranes without subsequent hydrolysis. Our data are inconsistent with the hypothesis that ER contributes membrane lipids to glyoxysomes during postgerminative seedling growth.(ABSTRACT TRUNCATED AT 400 WORDS)

PubMed Disclaimer

References

    1. Eur J Biochem. 1980 Dec;112(3):469-77 - PubMed
    1. Plant Physiol. 1986 May;81(1):313-6 - PubMed
    1. Plant Physiol. 1991 Jan;95(1):69-76 - PubMed
    1. Annu Rev Cell Biol. 1985;1:489-530 - PubMed
    1. Biochem J. 1990 Jul 1;269(1):233-8 - PubMed

Publication types