Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009;46(5):504-12.
doi: 10.1159/000226127. Epub 2009 Jun 26.

Adaptation of skeletal muscle microvasculature to increased or decreased blood flow: role of shear stress, nitric oxide and vascular endothelial growth factor

Affiliations
Review

Adaptation of skeletal muscle microvasculature to increased or decreased blood flow: role of shear stress, nitric oxide and vascular endothelial growth factor

Olga Hudlicka et al. J Vasc Res. 2009.

Abstract

This review elucidates the roles of capillary haemodynamics, nitric oxide (NO) and vascular endothelial growth factor (VEGF) in the remodelling of skeletal muscle microcirculation in response to increased (electrical stimulation) or decreased (chronic ischaemia) blood flow. During early stages of stimulation-induced angiogenesis, up-regulation of VEGF and its receptor VEGF receptor 2 is dependent on shear stress and NO release, whereas later, involvement of NO in the expanding capillary bed appears to be VEGF/VEGF receptor 2 independent. Arteriolar growth most likely relies on mechanical wall stresses while growth factor involvement is less clear. By contrast, in muscles with restricted blood flow, increased VEGF/VEGF receptor 2 expression after ischaemia onset is not associated with changes in shear stress or hypoxia, or capillary growth. After several weeks, VEGF protein levels are lower than normal while modest angiogenesis takes place, a temporal mismatch that limits the utility of using growth factor levels during ischaemia to assess angiogenic potential. Chronic stimulation of ischaemic muscles restores their depressed endothelial-dependent arteriolar dilatation, increases capillary shear stress and VEGF receptor 2 and promotes capillary growth. In patients with peripheral vascular disease, electrical stimulation of ischaemic calf muscles increases blood flow, capillary surface area and muscle performance, offering an alternative 'endogenous' treatment to gene or cell therapy.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources