Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jun 25:(28):1209.
doi: 10.3791/1209.

Measuring replicative life span in the budding yeast

Affiliations

Measuring replicative life span in the budding yeast

Kristan K Steffen et al. J Vis Exp. .

Abstract

Aging is a degenerative process characterized by a progressive deterioration of cellular components and organelles resulting in mortality. The budding yeast Saccharomyces cerevisiae has been used extensively to study the biology of aging, and several determinants of yeast longevity have been shown to be conserved in multicellular eukaryotes, including worms, flies, and mice. Due to the lack of easily quantified age-associated phenotypes, aging in yeast has been assayed almost exclusively by measuring the life span of cells in different contexts, with two different life span paradigms in common usage. Chronological life span refers to the length of time that a mother cell can survive in a non-dividing, quiescence-like state, and is proposed to serve as a model for aging of post-mitotic cells in multicellular eukaryotes. Replicative life span, in contrast, refers the number of daughter cells produced by a mother cell prior to senescence, and is thought to provide a model of aging in mitotically active cells. Here we present a generalized protocol for measuring the replicative life span of budding yeast mother cells. The goal of the replicative life span assay is to determine how many times each mother cell buds. The mother and daughter cells can be easily differentiated by an experienced researcher using a standard light microscope (total magnification 160X), such as the Zeiss Axioscope 40 or another comparable model. Physical separation of daughter cells from mother cells is achieved using a manual micromanipulator equipped with a fiber-optic needle. Typical laboratory yeast strains produce 20-30 daughter cells per mother and one life span experiment requires 2-3 weeks.

PubMed Disclaimer

References

    1. Kaeberlein M, Burtner CR, Kennedy BK. Recent developments in yeast aging. PLoS Genet. 2007;3 - PMC - PubMed
    1. Kaeberlein M. In: Handbook of models for human aging. Conn PM, editor. Boston: Elsevier Press; 2006. pp. 109–120.
    1. Smith ED. Quantitative evidence for conserved longevity pathways between divergent eukaryotic species. Genome Res. 2008;18:564–570. - PMC - PubMed
    1. Steinkraus KA, Kaeberlein M, Kennedy BK. Replicative aging in yeast: the means to the end. Annu Rev Cell Dev Biol. 2008;24:29–54. - PMC - PubMed
    1. Murakami CJ, Burtner CR, Kennedy BK, Kaeberlein M. A method for high-throughput quantitative analysis of yeast chronological life span. J Gerontol A Biol Sci Med Sci. 2008;63:113–121. - PubMed

Publication types

MeSH terms

LinkOut - more resources