Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jun;5(6):e1000536.
doi: 10.1371/journal.pgen.1000536. Epub 2009 Jun 26.

Genome-wide analyses of exonic copy number variants in a family-based study point to novel autism susceptibility genes

Affiliations

Genome-wide analyses of exonic copy number variants in a family-based study point to novel autism susceptibility genes

Maja Bucan et al. PLoS Genet. 2009 Jun.

Abstract

The genetics underlying the autism spectrum disorders (ASDs) is complex and remains poorly understood. Previous work has demonstrated an important role for structural variation in a subset of cases, but has lacked the resolution necessary to move beyond detection of large regions of potential interest to identification of individual genes. To pinpoint genes likely to contribute to ASD etiology, we performed high density genotyping in 912 multiplex families from the Autism Genetics Resource Exchange (AGRE) collection and contrasted results to those obtained for 1,488 healthy controls. Through prioritization of exonic deletions (eDels), exonic duplications (eDups), and whole gene duplication events (gDups), we identified more than 150 loci harboring rare variants in multiple unrelated probands, but no controls. Importantly, 27 of these were confirmed on examination of an independent replication cohort comprised of 859 cases and an additional 1,051 controls. Rare variants at known loci, including exonic deletions at NRXN1 and whole gene duplications encompassing UBE3A and several other genes in the 15q11-q13 region, were observed in the course of these analyses. Strong support was likewise observed for previously unreported genes such as BZRAP1, an adaptor molecule known to regulate synaptic transmission, with eDels or eDups observed in twelve unrelated cases but no controls (p = 2.3x10(-5)). Less is known about MDGA2, likewise observed to be case-specific (p = 1.3x10(-4)). But, it is notable that the encoded protein shows an unexpectedly high similarity to Contactin 4 (BLAST E-value = 3x10(-39)), which has also been linked to disease. That hundreds of distinct rare variants were each seen only once further highlights complexity in the ASDs and points to the continued need for larger cohorts.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. TaqMan experiments validate large de novo CNV calls.
To validate results using an independent method we designed TaqMan assays to evaluate gene dosage. Results from representative experiments highlight results at loci at 1q21, 8q21, and 10q24. AGRE individual harboring deletions (red arrows) or gains (green arrows) are indicated.
Figure 2
Figure 2. Rare exonic deletions (eDels) in NRXN1 and novel candidate genes alter predicted protein structures.
For each of BZRAP1 (a) NRXN1 (b) and MDGA2 (c) reference loci and encoded proteins (top) are contrasted against mutant loci and corresponding proteins (bottom; grey shading). Unique genomic deletions and corresponding protein truncations are highlighted in red and with black hatching, respectively. Schematized protein domains genes are as follows: BZRAP1—Src homology-3 (orange square), Fibronectin, type III (blue oval); NRXN1—Laminin G (orange hexagon), EGF-like (blue oval), 4.1 binding motif (green rectangle); MDGA2—IG-like domains (blue pentagon), MAM aka Meprin/A5-protein/PTPmu (blue oval).
Figure 3
Figure 3. Observed replication unlikely to be attributable to chance alone.
We performed 10,000 phenotype permutation trials on replication data and determined for each the number of loci harboring CNVs in cases but not controls. Thus, within each trial, the number of loci absent from controls in the replication cohort was determined. None of the permutation trials generated as many case-specific loci as observed in our actual dataset (n = 14; p<0.0001).
Figure 4
Figure 4. Exonic deletions, although enriched in cases versus controls, show imperfect segregation with disease in multiplex families.
Pedigrees for representative AGRE families harboring exonic deletions in BZRAP1 (A,B), kb), NRXN1 (C,D), and MDGA2 (E,F) are illustrated. Red filled circles correspond to exonic deletions. Black stars (upper right) highlight individuals for which CNV calls were not obtained (not genotyped or failing to meet criteria for quality control).

References

    1. Abrahams BS, Geschwind DH. Advances in autism genetics: on the threshold of a new neurobiology. Nat Rev Genet. 2008;9:341–355. - PMC - PubMed
    1. Bailey A, Le Couteur A, Gottesman I, Bolton P, Simonoff E, et al. Autism as a strongly genetic disorder: evidence from a British twin study. Psychol Med. 1995;25:63–77. - PubMed
    1. Steffenburg S, Gillberg C, Hellgren L, Andersson L, Gillberg IC, et al. A twin study of autism in Denmark, Finland, Iceland, Norway and Sweden. J Child Psychol Psychiatry. 1989;30:405–416. - PubMed
    1. Cantor RM, Kono N, Duvall JA, Alvarez-Retuerto A, Stone JL, et al. Replication of autism linkage: fine-mapping peak at 17q21. Am J Hum Genet. 2005;76:1050–1056. - PMC - PubMed
    1. Vorstman JA, Staal WG, van Daalen E, van Engeland H, Hochstenbach PF, et al. Identification of novel autism candidate regions through analysis of reported cytogenetic abnormalities associated with autism. Mol Psychiatry. 2006;11:18–28. - PubMed

Publication types

MeSH terms