Mitochondrial glutathione, a key survival antioxidant
- PMID: 19558212
- PMCID: PMC2821140
- DOI: 10.1089/ARS.2009.2695
Mitochondrial glutathione, a key survival antioxidant
Abstract
Mitochondria are the primary intracellular site of oxygen consumption and the major source of reactive oxygen species (ROS), most of them originating from the mitochondrial respiratory chain. Among the arsenal of antioxidants and detoxifying enzymes existing in mitochondria, mitochondrial glutathione (mGSH) emerges as the main line of defense for the maintenance of the appropriate mitochondrial redox environment to avoid or repair oxidative modifications leading to mitochondrial dysfunction and cell death. mGSH importance is based not only on its abundance, but also on its versatility to counteract hydrogen peroxide, lipid hydroperoxides, or xenobiotics, mainly as a cofactor of enzymes such as glutathione peroxidase or glutathione-S-transferase (GST). Many death-inducing stimuli interact with mitochondria, causing oxidative stress; in addition, numerous pathologies are characterized by a consistent decrease in mGSH levels, which may sensitize to additional insults. From the evaluation of mGSH influence on different pathologic settings such as hypoxia, ischemia/reperfusion injury, aging, liver diseases, and neurologic disorders, it is becoming evident that it has an important role in the pathophysiology and biomedical strategies aimed to boost mGSH levels.
Figures
References
-
- Anderson MF. Nilsson M. Eriksson PS. Sims NR. Glutathione monoethyl ester provides neuroprotection in a rat model of stroke. Neurosci Lett. 2004;354:163–165. - PubMed
-
- Anderson MF. Nilsson M. Sims NR. Glutathione monoethylester prevents mitochondrial glutathione depletion during focal cerebral ischemia. Neurochem Int. 2004;44:153–159. - PubMed
-
- Anstey KJ. Lipnicki DM. Low LF. Cholesterol as a risk factor for dementia and cognitive decline: a systematic review of prospective studies with meta-analysis. Am J Geriatr Psychiatry. 2008;16:343–354. - PubMed
-
- Armstrong JS. Jones DP. Glutathione depletion enforces the mitochondrial permeability transition and causes cell death in Bcl-2 overexpressing HL60 cells. FASEB J. 2002;16:1263–1265. - PubMed
-
- Baeuerle PA. Baltimore D. I kappa B: a specific inhibitor of the NF-kappa B transcription factor. Science. 1998;242:540–548. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
