Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Sep 4;386(4):645-9.
doi: 10.1016/j.bbrc.2009.06.110. Epub 2009 Jun 24.

Synthesis of fluorescent-maghemite nanoparticles as multimodal imaging agents for amyloid-beta fibrils detection and removal by a magnetic field

Affiliations

Synthesis of fluorescent-maghemite nanoparticles as multimodal imaging agents for amyloid-beta fibrils detection and removal by a magnetic field

Hadas Skaat et al. Biochem Biophys Res Commun. .

Abstract

Early diagnosis in Alzheimer's disease (AD), before the onset of marked clinical symptoms, is critical in preventing the irreversible neuronal damage that eventually leads to dementia and ultimately death. Therefore, there is an urgent need for in vivo imaging agents, which are valuable as specific biomarkers to demonstrate the location and density of amyloid plaques in the living human brain. The present manuscript describes a novel method for selective marking of Abeta(40) fibrils by non-fluorescent gamma-Fe(2)O(3) and fluorescent-magnetic gamma-Fe(2)O(3)-rhodamine or gamma-Fe(2)O(3)-Congo red nanoparticles, and the complete removal of the magnetized fibrils from the aqueous continuous phase by a magnetic field. These fluorescent-maghemite nanoparticles as multimodal imaging agents have a great advantage due to the combination of the magnetic and fluorescence imaging into one nanostructured system. This hybrid system, which selectively marks Abeta(40) fibrils, might enable the early detection of plaques using both MRI and fluorescence microscopy, and therefore may be applied in in vivo AD diagnosis studies. These fluorescent-magnetic nanoparticles may also be useful as selective biomarkers to detect the location and the removal of other amyloid plaques derived from different amyloidogenic proteins that lead to neurodegenerative diseases, e.g., Parkinson's, Huntington's, mad cow, and prion diseases.

PubMed Disclaimer

Publication types

LinkOut - more resources