Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009;48(31):5642-7.
doi: 10.1002/anie.200902028.

The true structures of the vannusals, part 1: Initial forays into suspected structures and intelligence gathering

Affiliations

The true structures of the vannusals, part 1: Initial forays into suspected structures and intelligence gathering

K C Nicolaou et al. Angew Chem Int Ed Engl. 2009.
No abstract available

PubMed Disclaimer

Figures

Figure 1
Figure 1
Originally assigned structures of vannusals A (1) and B (2) and initially targeted stereoisomers 3 [C21-epi-2] and 4 [C21-epi, C25-epi-2].
Figure 2
Figure 2
Key 1H NMR coupling constant (w-JH26, 15left = 1.6 Hz) and NOE exhibited by both the originally assigned structure (synthetic, 2) and natural vannusal B.
Figure 3
Figure 3
Retrosynthetic analysis of vannusal B stereoisomer 3 [C21-epi-2]. BOM = benzyloxymethyl; SEM = trimethylsilylethoxymethyl; TIPS = triisopropylsilyl.
Figure 4
Figure 4
Key 1H NMR coupling constants of vannusal B structure 3 (JH25,21 = 8.5 Hz, w-JH26,15left = 2.0 Hz)
Figure 5
Figure 5
Key 1H NMR coupling constants (w-JH26, 15left = 1.5 Hz, JH25, 21 = 3.5 Hz) and selected chemical shifts for vannusal B structure 4 and comparisons with those of natural vannusal B and its originally assigned structure (2).
Figure 6
Figure 6
Relevant NOE’s and coupling constants (J) of AB ring model compounds 31a31e. R =TBDPS = tert-butyldiphenylsilyl.
Scheme 1
Scheme 1
Construction of nitrile 12 (top) and X-ray derived ORTEP drawing of 13 (bottom). Reagents and conditions: (a) Martin’s sulfurane (1.1 equiv), Et3N (10 equiv), CH2Cl2, 25 °C, 5 h, 87 %; (b) tBuOOH (3.0 equiv), VO(acac)2 (0.2 equiv), PhH, 25 °C, 6 h, 90 %; (c) Ac2O (10 equiv), Et3N (30 equiv), 4-DMAP (1.0 equiv), CH2Cl2, 4 h, 25 °C, 90 %; (d) Et2AlCN (10 equiv), PhMe, −78→−20 °C, 19 h, 81 %; (e) K2CO3 (1.0 equiv), MeOH, 25 °C, 2 h, 100 %; (f) DMF/2,2-dimethoxypropane (1:1), PPTS (1.0 equiv), 24 h, 89 %.
Scheme 2
Scheme 2
Construction of aldehyde (±)-6. Reagents and conditions: (a) SEMCl (10 equiv), iPr2NEt (30 equiv), CH2Cl2, 50 °C, 48 h, 90 %; (b) DIBAL-H (1.1 equiv), PhMe, −78→30 °C, 1 h; then 0.1 M HCl, 25 °C, 20 min; (c) MeMgBr (10 equiv), THF, 0 °C, 30 min; (d) NMO (2.0 equiv), TPAP (0.05 equiv), CH2Cl2/CH3CN (7:1), 25 °C, 3 h; (e) MeMgBr (10 equiv), THF, −10 °C, 20 min, 72 % for four steps; (f) KHMDS (2.0 equiv), SEMCl (5.0 equiv), Et3N (10 equiv), 1 h, 92 %; (g) O3, py (1.0 equiv), CH2Cl2:MeOH (1:1), −78 °C; then Ph3P (5.0 equiv), −78→25 °C, 1 h, 89 %; (h) KH (10 equiv), allyl chloride (30 equiv), HMPA (10 equiv), DME, 25 °C, 12 h, 91 %; (i) iPr2NEt (1.0 equiv), o-dichlorobenzene, 200 °C (μ-waves), 20 min; then NaBH4 (10 equiv), MeOH, 1 h, 25 °C, 91 % for two steps; (j) BOMCl (10 equiv), iPr2NEt (30 equiv), nBu4NI (1.0 equiv), CH2Cl2, 50 °C 12 h; (k) O3, py (1.0 equiv), CH2Cl2:MeOH (1:1), −78 °C; then Ph3P (5.0 equiv), − 78→25 °C, 1 h, 92 % for two steps; (l) TBSCl (10 equiv), DBU (20 equiv), CH2Cl2, 25 °C, 48 h; (m) O3, py (1.0 equiv), CH2Cl2:MeOH (1:1), −78 °C; then Ph3P (5.0 equiv), −78→25 °C, 1 h, 92 % for two steps. HMPA = hexamethylphosphoramide, DBU = 1,8-diazoicyclo[5.4.0]undec-7-ene.
Scheme 3
Scheme 3
Synthesis of vannusal B structure 3 [C21-epi-2]. Reagents and conditions: (a) (−)-5 (1.3 equiv), tBuLi (2.5 equiv), THF, −78→−40 °C, 50 min; then (±)-6 (1.0 equiv), −40→0 °C, 20 min; (b) TBAF (2.0 equiv), THF, 25 °C, 6 h, 20, 41% for two steps, d-20, 42 % for two steps; (c) TESCl (2.0 equiv), imid (10 equiv), CH2Cl2, 25 °C, 5 h; (d) KHMDS (5.0 equiv), ClCO2Me (10.0 equiv), Et3N (10 equiv), THF, −78→25 °C, 1 h; (e) HF•py/py (1:4), 0→25 °C, 12 h, 79 % for three steps; (f) PhI(OAc)2 (2.0 equiv), AZADO (0.1 equiv), CH2Cl2, 25 °C, 24 h, 95 %; (g) SmI2 (0.1 M in THF, 4.0 equiv), HMPA (12 equiv), THF, −20→25 °C, 3.5 h, 22β, 33 % yield, 22α, 21 %; (h) NaH (15 equiv), CS2 (30 equiv), THF, 0→25 °C, 30 min; then MeI (45 equiv), 25 °C, 24 h; then 185 °C, μ-waves), o-dichlorobenzene, 15 min, 86 % for two steps; (i) POCl3, pyridine, 72 % (j) ThexBH2 (5.0 equiv), THF, − 10→25 °C, 0.5 h; then BH3•THF (15 equiv), 25 °C, 1 h; then 30 % H2O2/3 N NaOH (1:1 dr), 0→45 °C, 1 h; 70 %; (k) oNO2C6H4SeCN (3.0 equiv), nBu3P (6.0 equiv), py (9.0 equiv), THF, 25 °C; then 30 % H2O2, 0→45 °C, 68 %; (l) KHMDS (6.0 equiv), TESCl (4.0 equiv), Et3N (8.0 equiv), THF, −50→25 °C, 30 min, 89 %; (m) LiDBB (excess), THF, −78→−50 °C, 1 h, 83 %; (n) PhI(OAc)2 (2.0 equiv), 1-Me-AZADO (0.2 equiv), CH2Cl2, 25 °C, 22 h; (o) Ac2O (30 equiv), Et3N (90 equiv), 4-DMAP (2.0 equiv), CH2Cl2, 25 °C, 36 h, 87 % for two steps; (p) 48 % aq. HF:THF (1:3), 25 °C, 7 h, 77 %. KHMDS = potassium hexamethyldisilyazide, Thexyl = thexylborane, LiDBB = Lithium di-tert-butylbiphenyl.
Scheme 4
Scheme 4
Synthesis of aldehyde (±)-30 and vannusal B structure 4. Reagents and conditions: (a) LDA [generated from iPr2NH (5.0 equiv), nBuLi (2.5 M in haxanes, 5.0 equiv)], THF, −78→−40 °C; then acetone (20 equiv), −40→25 °C, 1 h, (3:1 dr); (b) TESOTf (2.0 equiv), 2,6-lut. (5.0 equiv), −78→−40 °C, 1 h, 66 % for two steps; (c) NaBH4 (20 equiv), THF:MeOH (1:1), −10→25 °C, 4 h; (d) EtOH, PPTS (0.10 equiv), 25 °C, 2 h, 91 % for two steps; (e) (MeO)2C(Me)2:DMF (1:1), PPTS (1.0 equiv), 25 °C, 48 h, 100 %; (f) SEMCl (5.0 equiv), iPr2NEt (15 equiv), nBu4NI (1.0 equiv), CH2Cl2, 50 °C, 24 h, 97 %;

Similar articles

Cited by

References

    1. Guella G, Dini F, Pietra F. Angew Chem. 1999;111:1217–1220. - PubMed
    2. Angew Chem Int Ed. 1999;38:1134–1136. - PubMed
    1. Guella G, Callone E, Di Giuseppe G, Frassanito R, Frontini FP, Mancini I, Dini F. Eur J Org Chem. 2007:5226–5234.
    1. Nicolaou KC, Zhang H, Ortiz A, Dagneau P. Angew Chem. 2008;120:8733–8738. - PMC - PubMed
    2. Angew Chem Int Ed. 2008;47:8605–8610. - PMC - PubMed
    1. Nicolaou KC, et al. Angew Chem. 2009 submitted.
    2. Angew Chem Int Ed. 2009 submitted, see following communication in this issue.
    1. For reviews on samarium diiodide used in organic synthesis, see: Edmonds DJ, Johnston D, Procter DJ. Chem Rev. 2004;104:3371–3403.Kagan HB. Tetrahedron. 2003;59:103510–10372.Molander GA, Harris CR. Chem Rev. 1996;96:307–308.

Publication types

LinkOut - more resources